Shark 机器学习库配置过程
记录下配置Shark过程,便于学习。
1 环境&库
- Windows 10
- VS 2017
- CMake
- Shark
- Boost C++ Libraries
本人使用的是boost_1_66_0版本。
2 Boost 库配置
1.解压boost_1_66,在文件夹下找到booststarp.bat文件,双击运行,会产生bjam.exe文件。
2.双击biam.exe文件,此时进行编译和安装。(大概20分钟)
3.此时boost库安装和配置完成。
4.在VS2017下新建空控制台项目,然后新建main.cpp,编写如下程序:
#include <iostream>
#include <boost/thread/thread.hpp>
void hello()
{
std::cout << "Hello world, I'm a thread!" << std::endl;
}
int main()
{
boost::thread thrd(&hello);
thrd.join();
}
5.配置VS2017下的库目录和链接库目录。方法:
项目->属性->VC++ 目录中附件额外库目录:F:\GitHub\boost_1_66_0。
项目->属性->VC++ 目录中附件额外库目录:F:\GitHub\boost_1_66_0\stage\lib。
6.编译完成。
3 Shark 配置
1.将Shark目录下的CMakeLists.txt拖入CMake中,选择build目标文件,点击Add Entry,进行如下设置(也可以用命令行方式进行,具体可参考CMake官方文档):
2.首先添加BOOL型参数Boost_NO_SYSTEM_PATHS,如下图所示(注意勾选Value复选框,表示将此BOOL值设置为真):
3.然后添加Path型参数BOOST_ROOT,该参数用于指定Boost库所在目录(此处为\boost_1_66_0),如下图所示:
4.点击Configure,如有错误可再次点击一下Configure,也可参照:Visual Studio 2008编译机器学习算法库Shark
本人修改:CMAKE_CONFIGURATION_TYPES丨Debug;Release
5.Generate完成后,打开build下的shark.sln。
6.选择生成->批生产,将其全部生成。
7.Shark文件下的:include、bin、lib 即为所需文件!
致谢链接
开源机器学习C++库Shark的编译与开发环境搭建
Shark机器学习库环境搭建
Visual Studio 2008编译机器学习算法库Shark