1091 N-自守数 (15 分)
如果某个数 KKK 的平方乘以 NNN 以后,结果的末尾几位数等于 KKK,那么就称这个数为“NNN-自守数”。例如 3×922=253923\times 92^2 = 25 3923×922=25392,而 2539225 39225392 的末尾两位正好是 929292,所以 929292 是一个 333-自守数。
本题就请你编写程序判断一个给定的数字是否关于某个 NNN 是 NNN-自守数。
输入格式:
输入在第一行中给出正整数 MMM(≤20\le 20≤20),随后一行给出 MMM 个待检测的、不超过 1000 的正整数。
输出格式:
对每个需要检测的数字,如果它是 NNN-自守数就在一行中输出最小的 NNN 和 NK2NK^2NK2 的值,以一个空格隔开;否则输出 No
。注意题目保证 N<10N < 10N<10。
输入样例:
3
92 5 233
输出样例:
3 25392
1 25
No
思路
学会使用to_string
函数:将整型转为字符型。
然后比较求和
K
2
K^2
K2后几位和待检测的位数值是否相同即可。
代码
#include <iostream>
#include <string>
using namespace std;
int main()
{
int n, num;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> num;
bool flag = true;
for (int j = 1; j < 10; j++) {
string pro = to_string(j * num * num); // N K平方的值
string sNum = to_string(num); // num的字符型
string s = pro.substr(pro.length() - sNum.length(), sNum.length()); //得到后几位
if (s == sNum) {
cout << j << " " << pro << endl;
flag = false;
break;
}
}
if (flag)
cout << "No" << endl;
}
}