SPFA 算法:实现原理及其应用

SPFA算法是解决单源最短路径问题的一种方法,适用于有向或无向图,能处理正负权边。文章介绍了算法的基本流程,包括初始化、迭代过程、负环判断,以及Java代码实现。然而,由于可能存在负环导致的死循环和不稳定的时间复杂度,SPFA算法被质疑其应用价值,尤其是与Dijkstra和Bellman-Ford等算法相比。
摘要由CSDN通过智能技术生成

一、前言

SPFA算法,全称为Shortest Path Faster Algorithm,是求解单源最短路径问题的一种常用算法,它可以处理有向图或者无向图,边权可以是正数、负数,但是不能有负环。

二、SPFA 算法

1、SPFA算法的基本流程

1. 初始化

首先我们需要起点s到其他顶点的距离初始化为一个很大的值(比如9999999,像是 JAVA 中可以设置 Integer.MAX_VALUE 来使),并将起点s的距离初始化为0。同时,我们还需要将起点s入队。

请添加图片描述

2. 迭代

每次从队列中取出一个顶点u,遍历所有从u出发的边,对于边(u,v)(其中v为从u可以到达的顶点),如果s->u->v的路径长度小于s->v的路径长度,那么我们就更新s->v的路径长度,并将v入队。

请添加图片描述

3. 循环

不断进行步骤2,直到队列为空。

4. 判断

最后,我们可以得到从起点s到各个顶点的最短路径长度,如果存在无穷小的距离,则说明从起点s无法到达该顶点。

其次,需要注意的是,SPFA算法中存在负环问题。如果存在负环,则算法会陷入死循环。因此,我们需要添加一个计数器,记录每个点进队列的次数。当一个点进队列的次数超过图中节点个数时,就可以判定存在负环。

2、代码详解

以下是使用Java实现 SPFA算法的代码,其中Graph类表示有向图或无向图,Vertex类表示图中的一个顶点,Edge类表示图中的一条边。

import java.util.*;

class Graph {
      // 图
    private List<Vertex> vertices;  // 顶点集

    public Graph() {
   
        vertices = new ArrayList<Vertex>();
    }

    public void addVertex(Vertex v) {
      // 添加顶点
        vertices.add(v);
    }   // 添加顶点

    public List<Vertex> getVertices() {
    // 返回顶点
        return vertices;
    }   // 获取顶点集
}

class Vertex {
     // 点
    private int id; // 点 id
    private List<Edge> edges;   // 连接到该顶点的边
    private int distance;   // 从源顶点到该顶点的最短距离,MAX_VALUE init
    private boolean visited;    // 在图的遍历过程中是否访问过该顶点,false init

    public Vertex(int id) {
   
        this.id = id;
        edges = new ArrayList<Edge>();
        distance = Integer.MAX_VALUE;
        visited = false;
    }

    public int getId() {
       // 获取 id
        return id
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值