题目大意:顺序经过k个点,求获得的最大权值和。
题解:很久前刚学dp时入门题的加强版,当时是O(n^2)过的……
设f[i]表示到第i个点的最大值,则有转移式:
f[i]=max{f[j]+w[i]} x[j]<=x[i],y[j]<=y[i]
这是一个二维偏序问题,排序+树状数组就可以维护了
我的收获:偏序get
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int M=100005;
int r,c,n,z[M];
long long C[M],f[M];
struct bus{int x,y,num;}a[M];
bool cmp(bus a,bus b){return a.x<b.x||(a.x==b.x&&a.y<b.y);}
void updata(int x,long long v){
for(int i=x;i<=n;i+=i&(-i))
C[i]=max(C[i],v);
}
int query(int x){
long long ret=0;
for(int i=x;i>0;i-=i&(-i))
ret=max(ret,C[i]);
return ret;
}
void work()
{
long long ans=0;
for(int i=1;i<=n;i++)
{
f[i]=query(a[i].y)+a[i].num;
ans=max(ans,f[i]);
updata(a[i].y,f[i]);
}
printf("%lld\n",ans);
}
void init()
{
cin>>r>>c>>n;
for(int i=1;i<=n;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].num),z[i]=a[i].y;
sort(z+1,z+1+n);
int cnt=unique(z+1,z+1+n)-z-1;
for(int i=1;i<=n;i++)
a[i].y=lower_bound(z+1,z+1+cnt,a[i].y)-z;
sort(a+1,a+1+n,cmp);
}
int main()
{
init();
work();
return 0;
}