题目大意:定义半联通图:对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径,求出图中最大半联通子图大小和数量
题解:容易发现缩点后DAG中的最长链就是答案(不同SCC之间有边就可以满足单向联通的条件),方案数的话,类似最短路松弛操作那样搞一搞就行了
PS:要处理重边
我的收获:强啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int M=100005;
const int MM=1000005;
int n,m,P,t,t2,mx,ans;
int head[M],last[M],f[M],g[M],ri[M];
int tim,top,scnt;
int low[M],dfn[M],col[M],sz[M],s[M],q[M];
bool ins[M];
struct edge{int to,nex;}e[MM*2],p[MM*2];
void add(int u,int v){e[t]=(edge){v,head[u]};head[u]=t++;}
void insert(int u,int v){
for(int i=last[u];i!=-1;i=p[i].nex) if(p[i].to==v) return ;
p[t2]=(edge){v,last[u]};last[u]=t2++;ri[v]++;
}
void tarjan(int x){
int now=0;
dfn[x]=low[x]=++tim;
s[++top]=x;ins[x]=1;
for(int i=head[x];i!=-1;i=e[i].nex){
int v=e[i].to;
if(!dfn[v]) tarjan(v),low[x]=min(low[x],low[v]);
else if(ins[v]) low[x]=min(low[x],dfn[v]);
}
if(low[x]==dfn[x]){
scnt++;
while(x!=now){
now=s[top--];
ins[now]=0;col[now]=scnt;++sz[scnt];
}
}
}
void rebuild(){
for(int x=1;x<=n;x++)
for(int i=head[x];i!=-1;i=e[i].nex)
if(col[x]!=col[e[i].to]) insert(col[x],col[e[i].to]);
}
void dp()
{
int l=0,r=0;
for(int i=1;i<=scnt;i++){
f[i]=sz[i];g[i]=1;
if(!ri[i]) q[r++]=i;
}
while(l!=r)
{
int x=q[l++];
for(int i=last[x];i!=-1;i=p[i].nex){
int v=p[i].to;ri[v]--;
if(!ri[v]) q[r++]=v;
if(f[v]<f[x]+sz[v]) f[v]=f[x]+sz[v],g[v]=g[x];
else if(f[v]==f[x]+sz[v]) g[v]+=g[x],g[v]%=P;//注意else
}
}
}
void work()
{
for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
rebuild();dp();
for(int i=1;i<=scnt;i++)
{
if(f[i]>mx) mx=f[i],ans=g[i];
else if(f[i]==mx) ans+=g[i],ans%=P;//注意else……
}
printf("%d\n%d\n",mx,ans);
}
void init()
{
int x,y;
t=0;memset(head,-1,sizeof(head));
t2=0;memset(last,-1,sizeof(last));
cin>>n>>m>>P;
for(int i=1;i<=m;i++) scanf("%d%d",&x,&y),add(x,y);
}
int main()
{
init();
work();
return 0;
}