1101: [POI2007]Zap/2045: 双亲数/2301: [HAOI2011]Problem b

题目链接

题目大意:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d

题解:

a=[a/d]b=[b/d]

i=1aj=1b[gcd(i,j)=k]

= i=1aj=1b[gcd(i,j)=1]
μI=e

= i=1aj=1bd|gcd(i,j))μ(d)

d|gcd(x,y)d|x  &  d|y

= d=1min(a,b)μ(d)[ad][bd]

[ad]d2a
具体分块的方法类似1257,但这个是两个区间,要麻烦一些

2301的话加一个容斥即可

我的收获:反演神啊

2301

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int M=50005;

int a,b,c,d,k;
int p,T,pri[M],u[M],sum[M];
bool f[M];

void sieve()
{
    sum[1]=u[1]=1;
    for(int i=2;i<=M;i++){
        if(!f[i]) pri[++p]=i,u[i]=-1;
        for(int j=1;j<=p&&i*pri[j]<=M;j++){
            f[i*pri[j]]=1;
            if(i%pri[j]==0){u[i*pri[j]]=0;break;}
            u[i*pri[j]]=-u[i];
        }
        sum[i]=sum[i-1]+u[i];
    }
}

int calc(int n,int m){
    int ret=0;n/=k;m/=k;
    for(int l=1,r;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));//因为两个区间要取相交,所以r要取min 
        ret+=(n/l)*(m/l)*(sum[r]-sum[l-1]);
    }
    return ret;
}

void init()
{
    scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
    printf("%d\n",calc(b,d)-calc(a-1,d)-calc(c-1,b)+calc(a-1,c-1));
}

int main()
{
    sieve();
    cin>>T;
    while(T--) init();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值