2286: [Sdoi2011]消耗战

题目链接

$题目大意:给定一棵树,边上有边权,m次询问,每次选定一些关键点,求将1号节点与所有关键点都切断所需的最小花销

f[i]imi[i]i1f[i]=min(mi[i],f[son])

O(nm)

klca

同时,要求维护的信息可以方便的进行转移,这样才能在压缩信息后不影响答案

这里需要分类讨论一下,用一个栈维护一条链……
栈中的元素形成一条由根节点出发的链,初始栈中只有根节点
每次加入一个节点,求出节点与栈顶的LCA,将栈中所有深度大于LCA的节点全都弹掉
然后将LCA和该节点入栈,注意有些重复的情况要考虑

我的收获:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

#define L 19
#define INF 1e60
#define M 266666

int n,k,m;
int t,tot,tm,w,top;
int head[M],last[M],st[M];
int dfn[M],fa[M][L+2],dep[M],h[M];
long long f[M],mi[M];

struct edge{int to,val,nex;}e[M*4],p[M*4];//p用来存虚树 

void add(int u,int v,int w){e[t]=edge{v,w,head[u]};head[u]=t++;}

void ins(int u,int v){if(u==v) return ;p[tot].to=v,p[tot].nex=last[u],last[u]=tot++;} 

bool cmp(int x,int y){return dfn[x]<dfn[y];}

void dfs(int x){
    dfn[x]=++tm;
    for(int i=1;i<=L;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
    for(int i=head[x];i!=-1;i=e[i].nex){
        int v=e[i].to;
        if(v!=fa[x][0]){
            mi[v]=min(mi[x],(long long)e[i].val);
            fa[v][0]=x,dep[v]=dep[x]+1;
            dfs(v);
        }
    }
}

int lca(int x,int y){
    if(dep[x]<dep[y]) swap(x,y);
    for(int i=0;i<=L;i++) if((dep[x]-dep[y])&(1<<i)) x=fa[x][i];
    if(x==y) return x;
    for(int i=L;i>=0;i--) 
    if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    return fa[x][0];
}

void dp(int x){
    f[x]=mi[x];
    long long tmp=0;
    for(int i=last[x];i!=-1;i=p[i].nex){
        dp(p[i].to);
        tmp+=f[p[i].to];
    }
    last[x]=-1; 
    if(tmp&&tmp<=f[x]) f[x]=tmp;
}

void virtree()//http://www.cnblogs.com/owenyu/p/6724751.html
{
    scanf("%d",&k);
    for(int i=1;i<=k;i++) scanf("%d",&h[i]);
    sort(h+1,h+k+1,cmp);//按dfs序排序 
    int pts=0;tot=top=0;
    h[++pts]=h[1];
    for(int i=2;i<=k;i++) if(lca(h[pts],h[i])!=h[pts]) h[++pts]=h[i];
    st[++top]=1;//随便找一个不会成为询问点的作根 
    for(int i=1;i<=pts;i++){
        int now=h[i],lt=lca(now,st[top]);
        while(dep[lt]<dep[st[top]]){
            if(dep[lt]>=dep[st[top-1]]){//在两个子树,lca深度更大!!
                ins(lt,st[top--]);
                if(st[top]!=lt) st[++top]=lt;
                break;
            }
            ins(st[top-1],st[top]),top--;
        }
        if(st[top]!=now) st[++top]=now;//在同一子树
    }
    while(top>1) ins(st[top-1],st[top]),top--;//剩下的 
}

void work()
{
    while(m--)
    {
        virtree();
        dp(1);
        printf("%lld\n",f[1]);
    }
}

void init()
{
    int x,y,z;
    tot=0,memset(last,-1,sizeof(last));
    t=0,memset(head,-1,sizeof(head));
    scanf("%d",&n);
    for(int i=1;i<n;i++)
        scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
    mi[1]=INF;dfs(1);
    scanf("%d",&m);
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值