题目大意:一个图,n个点,对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号大的那个的时间为w。另外有n个值Ai,表示从任何一个点到达i点的时间为Ai。初始时你在n个点之外的一个 点上,我们称其为初始点B。要求从B出发,遍历n个点每个点一次,求最小时间。显然开始你只能使用Ai从B到达n个点中的某个点,因为B到n个点中没有其他的边。
题解:有上下界的网络流?题目中有一种从编号小的到编号大的方式,好像是DAG……
先不考虑瞬移,拆点,跑DAG最小路径覆盖,因为有权,跑费用流
连(st,i,1,0),(i+n,ed,1,0)
对于每条边,设边权为z,连(i,j+n,1,z),i<j
下面考虑瞬移,连(st,i+n,1,ai),因为每个点只能经过一次,这样保证了瞬移点无法用普通方式经过,我们并不关心路径的具体方案,只关心这个点会被进一次,出一次
这样一定是满流的
我的收获:Orz
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int M=1905;
#define INF 0x7fffffff
int n,m,t,st,ed,ans;
int d[M],head[M],pre[M];
bool vis[M];
queue<int> q;
struct edge{int fro,to,c,val,nex;}e[M*21];
void add(int u,int v,int c,int val){e[t]=(edge){u,v,c,val,head[u]};head[u]=t++;}
void insert(int i,int j,int w,int z){add(i,j,w,z),add(j,i,0,-z);}
bool spfa()
{
for(int i=0;i<=ed;i++) vis[i]=0,d[i]=INF;
d[st]=0;q.push(st);
while(!q.empty())
{
int u=q.front();q.pop();vis[u]=false;
for(int i=head[u];i!=-1;i=e[i].nex){
int v=e[i].to;
if(e[i].c&&d[v]>d[u]+e[i].val){
d[v]=d[u]+e[i].val;
pre[v]=i;
if(!vis[v]){
vis[v]=true;
q.push(v);
}
}
}
}
return d[ed]!=INF;
}
void flow()
{
int mx=INF;
for(int u=ed;u!=st;u=e[pre[u]].fro)
mx=min(mx,e[pre[u]].c);
for(int u=ed;u!=st;u=e[pre[u]].fro){
e[pre[u]].c-=mx;e[pre[u]^1].c+=mx;
ans+=mx*e[pre[u]].val;
}
}
void work(){
while(spfa()) flow();
cout<<ans<<endl;
}
void init()
{
int x,y,z;
t=0;memset(head,-1,sizeof(head));
cin>>n>>m;
st=0;ed=n*2+1;
for(int i=1;i<=n;i++) scanf("%d",&z),insert(st,i+n,1,z);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
if(x>y) swap(x,y);
insert(x,y+n,1,z);
}
for(int i=1;i<=n;i++) insert(st,i,1,0),insert(i+n,ed,1,0);
}
int main()
{
init();
work();
return 0;
}