1927: [Sdoi2010]星际竞速

题目链接

题目大意:一个图,n个点,对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号大的那个的时间为w。另外有n个值Ai,表示从任何一个点到达i点的时间为Ai。初始时你在n个点之外的一个 点上,我们称其为初始点B。要求从B出发,遍历n个点每个点一次,求最小时间。显然开始你只能使用Ai从B到达n个点中的某个点,因为B到n个点中没有其他的边。

题解:有上下界的网络流?题目中有一种从编号小的到编号大的方式,好像是DAG……

先不考虑瞬移,拆点,跑DAG最小路径覆盖,因为有权,跑费用流
(st,i,1,0),(i+n,ed,1,0)
z,(i,j+n,1,z),i<j

(st,i+n,1,ai)

这样一定是满流的

我的收获:Orz

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;

const int M=1905;
#define INF 0x7fffffff

int n,m,t,st,ed,ans;
int d[M],head[M],pre[M];
bool vis[M];

queue<int> q;

struct edge{int fro,to,c,val,nex;}e[M*21];

void add(int u,int v,int c,int val){e[t]=(edge){u,v,c,val,head[u]};head[u]=t++;}
void insert(int i,int j,int w,int z){add(i,j,w,z),add(j,i,0,-z);}

bool spfa()
{
    for(int i=0;i<=ed;i++) vis[i]=0,d[i]=INF;
    d[st]=0;q.push(st);
    while(!q.empty())
    {
        int u=q.front();q.pop();vis[u]=false;
        for(int i=head[u];i!=-1;i=e[i].nex){
            int v=e[i].to;
            if(e[i].c&&d[v]>d[u]+e[i].val){
                d[v]=d[u]+e[i].val;
                pre[v]=i;
                if(!vis[v]){
                    vis[v]=true;
                    q.push(v);
                }
            }
        }
    }
    return d[ed]!=INF;
}

void flow()
{
    int mx=INF;
    for(int u=ed;u!=st;u=e[pre[u]].fro)
        mx=min(mx,e[pre[u]].c);
    for(int u=ed;u!=st;u=e[pre[u]].fro){
        e[pre[u]].c-=mx;e[pre[u]^1].c+=mx;
        ans+=mx*e[pre[u]].val;
    }
}

void work(){
    while(spfa()) flow();
    cout<<ans<<endl;
}

void init()
{
    int x,y,z;
    t=0;memset(head,-1,sizeof(head));
    cin>>n>>m;
    st=0;ed=n*2+1;
    for(int i=1;i<=n;i++) scanf("%d",&z),insert(st,i+n,1,z);
    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&x,&y,&z);
        if(x>y) swap(x,y);
        insert(x,y+n,1,z);
    }
    for(int i=1;i<=n;i++) insert(st,i,1,0),insert(i+n,ed,1,0);
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值