题目大意:给定一个序列,要求找到连续的序列满足长度在[L,R]范围内,询问前K大的满足条件的序列的和
题解:首先把区间和变为区间端点的前缀和相减
假设已经确定了所选区间的右端点,那么左端点则被固定在一个范围内
可以用ST表查询区间最值。初始把每个可行的右端点找出最优的左端点扔进堆里
当取出一个最优左端点之后,对于这个右端点就不能取这个左端点了,需要删掉它,设要在[a,b]中删掉y,把[a,b]分裂成[a,y-1]和[y+1,b]再加入就好了
这样,堆中存放一个四元组(sum,x,a,b),分别代表区间和,右端点,合法左端点的区间端点
我的收获:删除区间中点的方法,神奇思想
#include <cstdio>
#include <iostream>
#include <queue>
#include <cmath>
#include <cstring>
using namespace std;
const int M=500010;
typedef pair<int,int> pii;
priority_queue<pair<pii,pii> > q;
#define mp(A,B,C,D) make_pair(make_pair(A,B),make_pair(C,D))
int n,m,L,R;
long long ans;
int f[M][20],v[M],s[M];
int Mi(int a,int b){return s[a]<s[b]?a:b;}
int query(int x,int y)
{
if(x>y) return -1;
int k=log(y-x+1)/log(2);
return Mi(f[x][k],f[y-(1<<k)+1][k]);
}
void ST()
{
for(int i=1;i<=n;i++) f[i][0]=i;
for(int j=1;j<=18;j++)
for(int i=0;i+(1<<j)-1<=n;i++)
f[i][j]=Mi(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
void work()
{
int x,a,b,y,c,d;
for(int i=1;i<=m;i++)
{
pii t1=q.top().first,t2=q.top().second;
ans+=t1.first,x=t1.second,a=t2.first,b=t2.second,y=query(a,b),q.pop();
c=query(a,y-1),d=query(y+1,b);
if(c!=-1) q.push(mp(s[x]-s[c],x,a,y-1));
if(d!=-1) q.push(mp(s[x]-s[d],x,y+1,b));
}
printf("%lld\n",ans);
}
void init()
{
cin>>n>>m>>L>>R;
for(int i=1;i<=n;i++) scanf("%d",&v[i]),s[i]=s[i-1]+v[i];
ST();
for(int i=L;i<=n;i++) q.push(mp(s[i]-s[query(max(i-R,0),i-L)],i,max(i-R,0),i-L));
}
int main()
{
init();
work();
return 0;
}