题目大意:求区间逆序对数
题解:区间端点+-1后可以用树状数组维护出新加入/删除的数带来的贡献,考虑莫队
注意区间移动时关于区间元素个数的细节问题
时间复杂度
O(nn√logn)
我的收获:~~~~
#include <cstdio>
#include <vector>
#include <map>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=50005;
int n,m,blo,now;
int a[N],z[N],ans[N];
int pos[N];
struct question{int l,r,id;}q[N];
bool operator<(question x,question y){return pos[x.l]<pos[y.l]||(pos[x.l]==pos[y.l]&&x.r<y.r);}
struct Binary_Tree{
int c[N];
void add(int x,int v){
for(;x<=n;x+=x&(-x)) c[x]+=v;
}
int query(int x){
int ret=0;
for(;x>0;x-=x&(-x)) ret+=c[x];
return ret;
}
}T;
void hashit()
{
for(int i=1;i<=n;i++) z[i]=a[i];
sort(z+1,z+1+n);
int cnt=unique(z+1,z+1+n)-z-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(z+1,z+1+cnt,a[i])-z;
}
void work()
{
int l=1,r=0;
for(int i=1;i<=m;i++){
while(r<q[i].r) ++r,T.add(a[r],1),now+=(r-l+1)-T.query(a[r]);
while(l>q[i].l) --l,T.add(a[l],1),now+=T.query(a[l]-1);
while(r>q[i].r) T.add(a[r],-1),now-=(r-l)-T.query(a[r]),r--;
while(l<q[i].l) T.add(a[l],-1),now-=T.query(a[l]-1),l++;
ans[q[i].id]=now;
}
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
}
void init()
{
scanf("%d",&n);blo=sqrt(n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),pos[i]=(i-1)/blo+1;
scanf("%d",&m);for(int i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;sort(q+1,q+1+m);
hashit();
}
int main()
{
init();
work();
return 0;
}