3289: Mato的文件管理

题目链接

题目大意:求区间逆序对数

题解:区间端点+-1后可以用树状数组维护出新加入/删除的数带来的贡献,考虑莫队
注意区间移动时关于区间元素个数的细节问题
时间复杂度 O(nnlogn)

我的收获:~~~~

#include <cstdio>
#include <vector>
#include <map>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;

const int N=50005;

int n,m,blo,now;
int a[N],z[N],ans[N];
int pos[N];

struct question{int l,r,id;}q[N];
bool operator<(question x,question y){return pos[x.l]<pos[y.l]||(pos[x.l]==pos[y.l]&&x.r<y.r);}

struct Binary_Tree{
    int c[N];
    void add(int x,int v){
        for(;x<=n;x+=x&(-x)) c[x]+=v;
    }
    int query(int x){
        int ret=0;
        for(;x>0;x-=x&(-x)) ret+=c[x];
        return ret;
    }
}T;

void hashit()
{
    for(int i=1;i<=n;i++) z[i]=a[i];
    sort(z+1,z+1+n);
    int cnt=unique(z+1,z+1+n)-z-1;
    for(int i=1;i<=n;i++) a[i]=lower_bound(z+1,z+1+cnt,a[i])-z;
}

void work()
{
    int l=1,r=0;
    for(int i=1;i<=m;i++){
        while(r<q[i].r) ++r,T.add(a[r],1),now+=(r-l+1)-T.query(a[r]);
        while(l>q[i].l) --l,T.add(a[l],1),now+=T.query(a[l]-1);
        while(r>q[i].r) T.add(a[r],-1),now-=(r-l)-T.query(a[r]),r--; 
        while(l<q[i].l) T.add(a[l],-1),now-=T.query(a[l]-1),l++;
        ans[q[i].id]=now;
    }
    for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
}

void init()
{
    scanf("%d",&n);blo=sqrt(n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]),pos[i]=(i-1)/blo+1;
    scanf("%d",&m);for(int i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;sort(q+1,q+1+m);
    hashit();
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值