3622: 已经没有什么好害怕的了

题目链接

题目大意:给定两个长度为n个序列,保证这2n个数字两两不同,求有多少匹配满足 a[i]>b[i] 的数对数比 a[i]<b[i] 的数对数多k

题解:设有x对满足 a[i]>b[i] ,y对满足 a[i]<b[i] ,有

{x+y=nxy=k

x=n+k2 ,问题转化为 a[i]>b[i] n+k2 对的方案数

先把a,b排序
处理出 nxti 表示最大的下标x满足 bx<ai

恰好不好求,常见的套路是先求至少然后容斥

f[i][j] 表示到 ai ,有至少j对满足 a[x]>b[x] 的方案数

显然有 f[i][j]=f[i1][j]+f[i1][j1]max(nxti(j1),0)

用f[i]代表上面的f[n][i]*(n-i)!,用g[i]代表恰好有i个符合条件的方案数

根据定义,有 f[i]=j=ing[i]Cij

二项式反演一下,得到

ret=j=kn(1)jkans[j] Ckj

我的收获:经典……

#include<bits/stdc++.h>
using namespace std;

#define ll long long

const int P=1e9+9;
const int N=2010;

int n,k;
int a[N],b[N],nxt[N];
ll f[N][N];
ll ans[N];
ll c[N][N],fac[N];

int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}

void predown()
{
    for(int i=0;i<=n;i++) c[i][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
            c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
    fac[0]=1;for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
}

void work()
{
    for(int i=0;i<=n;i++) f[i][0]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=i;j++)
            f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(nxt[i]-j+1,0))%P;
    ll ret=0;
    for(int i=k,tmp=1;i<=n;i++,tmp=-tmp)
        ans[i]=(f[n][i]*fac[n-i])%P,ret=(ret+1ll*tmp*ans[i]*c[i][k]%P+P)%P;
    printf("%lld\n",(ret+P)%P);
}

void init()
{
    n=read();k=read();
    k=n+k>>1;
    for(int i=1;i<=n;i++) a[i]=read();
    for(int i=1;i<=n;i++) b[i]=read();
    sort(a+1,a+n+1);sort(b+1,b+n+1);
    for(int i=1,j=1;i<=n;i++){
        for(;j<=n&&b[j]<a[i];j++);
        nxt[i]=j-1;
    }
    predown();
}

int main()
{
    init();
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值