题目大意:给定两个长度为n个序列,保证这2n个数字两两不同,求有多少匹配满足 a[i]>b[i] 的数对数比 a[i]<b[i] 的数对数多k
题解:设有x对满足
a[i]>b[i]
,y对满足
a[i]<b[i]
,有
{x+y=nx−y=k
即 x=n+k2 ,问题转化为 a[i]>b[i] 有 n+k2 对的方案数
先把a,b排序
处理出
nxti
表示最大的下标x满足
bx<ai
恰好不好求,常见的套路是先求至少然后容斥
f[i][j] 表示到 ai ,有至少j对满足 a[x]>b[x] 的方案数
显然有 f[i][j]=f[i−1][j]+f[i−1][j−1]∗max(nxti−(j−1),0)
用f[i]代表上面的f[n][i]*(n-i)!,用g[i]代表恰好有i个符合条件的方案数
根据定义,有 f[i]=∑j=ing[i]Cij
二项式反演一下,得到
ret=∑j=kn(−1)j−kans[j] Ckj
我的收获:经典……
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int P=1e9+9;
const int N=2010;
int n,k;
int a[N],b[N],nxt[N];
ll f[N][N];
ll ans[N];
ll c[N][N],fac[N];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void predown()
{
for(int i=0;i<=n;i++) c[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%P;
fac[0]=1;for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
}
void work()
{
for(int i=0;i<=n;i++) f[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
f[i][j]=(f[i-1][j]+f[i-1][j-1]*max(nxt[i]-j+1,0))%P;
ll ret=0;
for(int i=k,tmp=1;i<=n;i++,tmp=-tmp)
ans[i]=(f[n][i]*fac[n-i])%P,ret=(ret+1ll*tmp*ans[i]*c[i][k]%P+P)%P;
printf("%lld\n",(ret+P)%P);
}
void init()
{
n=read();k=read();
k=n+k>>1;
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<=n;i++) b[i]=read();
sort(a+1,a+n+1);sort(b+1,b+n+1);
for(int i=1,j=1;i<=n;i++){
for(;j<=n&&b[j]<a[i];j++);
nxt[i]=j-1;
}
predown();
}
int main()
{
init();
work();
return 0;
}