2186: [Sdoi2008]沙拉公主的困惑

题目链接

题目大意:求1~n!中与m!互质的数的个数%R(一个质数),多组询问

题解:根据phi的定义可以得到phi(m!)表示[1,m!)中与m!互质的数的个数

有一个性质: gcd(i,j)=gcd(i+j,j)

那么gcd(i,m!)=1,gcd(i+m!,m!)=1,所以每个m!以内和m!互质的数都可以通过这个方法拓展

对于每个i,算上自己一共可以拓展n!/m!次,那么答案就是phi(m!)*n!/m!

然后可以把phi拆开……
phi(m!)=m!((pi1)/pi)
pi 为m!的所有质因子,也即m内所有质数

因为多组询问所以预处理……

我的收获:欧拉函数……

#include <bits/stdc++.h>
using namespace std;

#define INF 1000000000
#define N 10000000
#define ll long long

int read()
{
    int x=0;char ch=getchar();
    while(ch<'0'||ch>'9')ch=getchar();
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x;
}

int T,R,n,m,cnt;
int fac[N+5],ine[N+5],pri[N],ans[N+5];
bool mark[N+5];

void pre()
{
    fac[1]=1;for(int i=2;i<=N;i++)fac[i]=(ll)fac[i-1]*i%R;
    ine[1]=1;
    for(int i=2;i<=N;i++)
    {
        if(!mark[i]) pri[++cnt]=i;
        for(int j=1;pri[j]*i<=N&&j<=cnt;j++)
        {
            mark[pri[j]*i]=1;
            if(i%pri[j]==0)break;
        }
    }
    for(int i=2;i<=N&&i<R;i++)
        ine[i]=(R-(ll)R/i*ine[R%i]%R);
    ans[1]=1;
    for(int i=2;i<=N;i++)
    {
        ans[i]=ans[i-1];
        if(!mark[i]) ans[i]=(ll)ans[i]*(i-1)%R*ine[i%R]%R;
    }
}

int main()
{
    T=read();R=read();
    pre();
    while(T--)
    {
        n=read();m=read();
        printf("%lld\n",(ll)fac[n]*ans[m]%R);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值