问题描述
未名湖边的烦恼:
每年冬天,北大未名湖上都是滑冰的好地方。北大体育组准备了许多冰鞋,可是人太多了,每天下午收工后,常常一双冰鞋都不剩。
每天早上,租鞋窗口都会排起长龙,假设有还鞋的m个,有需要租鞋的n个。现在的问题是,这些人有多少种排法,可以避免出现体育组没有冰鞋可租的尴尬场面。(两个同样需求的人(比如都是租鞋或都是还鞋)交换位置是同一种排法)
分析:
已知每天收工一双鞋都不剩,那么所有的鞋都来源于还鞋的人(m),题目要满足,不出现没鞋可租的状况,那么借鞋的人数就必须小于等于还鞋的人数。
窗口前可能出现两种人,1.借鞋 2.还鞋 每次要做的工作也就是借鞋与还鞋,每有一个人借鞋借鞋人数减1,每有一个人还鞋还鞋人数减1,当剩余借鞋人数为零时,那么排队方案可行。
下面是代码:
#include<stdio.h>
#include<windows.h>
#pragma warning (disable:4996)
int Queue(int m, int n)
{
if (n == 0)//无人借鞋说明所有人的需求都已经得到满足了,符合条件
return 1;
if (n > m)//如果借鞋的人比还鞋的人多,那么无论如何都无法满足
return 0;
return Queue(m - 1, n) + Queue(m, n - 1);//每次一个人还鞋,或者一个人借鞋,遍历所有可能性
}
int main()
{
int m = 0;//还鞋人数
int n = 0;//借鞋人数
scanf("%d%d", &m, &n);
int num = Queue(m, n);
printf("%d", num);
system("pause");
return 0;
}