2021 ICPC Asia Taiwan Online Programming Contest E. Eatcoin

本文解析了一种进化算法如何挖掘加密货币Eatcoin,探讨了实现Duotrigintillionaire目标所需的初始资金(x)和最短天数(y)。算法性能随执行天数提升,但依赖于初始p Eatcoins。核心挑战在于处理大数运算,适合Python编程者进阶挑战。


链接: 2021icpctaiwan.

E. Eatcoin

Eric developed a new algorithm to mine a cryptocurrency called Eatcoin. Since Eric’s algorithm is an evolutionary algorithm, its performance keeps improving. On the d-th day of the execution of Eric’s algorithm, it consumes p Eatcoins and then produces q×d5 Eatcoins where p and q are positive constants.

Eric wants to become a “duotrigintillionaire”. A duotrigintillionaire is a person who has at least 1099 Eatcoins. Eric plans to exploit his algorithm to achieve his goal. Eric’s algorithm can soon produce a massive amount of Eatcoins if he has enough Eatcoins. However, his algorithm cannot continue if he does not have p Eatcoins when needed.

Eric gives the values of p and q to you. Please write a program to help Eric to compute two numbers x and y defined as follows.

x is the minimum number of Eatcoins required to execute Eric’s algorithm to make him a duotrigintillionaire.
y is the minimum number of days required to make Eric a duotrigintillionaire if Eric has exactly x Eatcoins before executing his algorithm.

题意解析

cao
人麻了
写不出来
思路:
链接: link.
就卡大数了,python还不会
gan
以后补提,,,
欢迎大佬补提

AC

<think>根据用户请求,用户需要查找2024年ICPC亚洲区域赛在线赛(1)的I题相关内容。由于提供的引用中没有直接关于2024年比赛的信息(引用[1]-[4]分别是2023、2021和2022年的比赛),因此无法直接从引用中获取该题的具体内容。 但是,考虑到ICPC比赛题目的常见类型和结构,我们可以推测I题可能涉及算法或数学问题。根据引用[3]和[4]中提到的解题思路(如打表、二分搜索、泰勒展开等),以及引用[1]中关于图论(公交路线问题)的描述,我们可以合理猜测2024年的I题也可能涉及类似算法。 由于缺乏具体题目信息,建议用户提供更多细节或尝试搜索最新比赛资料。同时,我们可以根据ICPC常见题型给出一般性解题建议: 1. **理解题目**:仔细阅读题目描述,明确输入输出格式和约束条件。 2. **设计算法**:根据问题类型(如动态规划、图论、数学等)选择合适算法。 3. **优化效率**:注意数据规模,选择时间复杂度和空间复杂度符合要求的算法。 若用户需要进一步帮助,建议提供题目具体描述。 §§相关问题§§ 1. 2024年ICPC亚洲区域赛在线赛(1)的其他题目有哪些? 2. 如何获取ICPC比赛的题目和题解? 3. 解决算法竞赛问题的一般步骤是什么? </think> 基于您的查询,我未能找到**2024年ICPC亚洲区域赛在线赛(1)I题**的直接内容。现有引用([1]-[4])涉及2021-2023年的赛事,但未覆盖2024年赛题。以下是结合ICPC题型特点的通用解题框架,供参考: --- ### **ICPC图论问题通用解法框架(以公交路线类问题为例)** 此类问题通常基于树或图结构(如引用[1]的公交路线),需处理路径查询或动态更新。核心步骤: 1. **建图与预处理** - 根据输入构建树/图,存储节点关系(如邻接表)。 - 预处理关键信息(如LCA、DFS序),优化查询效率。 ```python # 示例:构建无向图(邻接表) graph = [[] for _ in range(n+1)] for i in range(1, n): p = int(input()) # 父节点 graph[p].append(i+1) graph[i+1].append(p) ``` 2. **问题转化** - 将原问题转化为已知模型(如最近公共祖先、树上差分)。例如: > 若I题涉及多站点路径查询,可转化为LCA求两点距离[^1]。 3. **算法选择** - **静态查询**:LCA(倍增/Tarjan)、树链剖分。 - **动态更新**:DFS序+线段树、树上差分。 - **数学优化**:若含公式计算(如引用[4]),结合泰勒展开或极限分析。 4. **复杂度优化** - 避免暴力搜索(引用[3]提到打表不可行时改用二分)。 - 利用约束条件(如引用[1]中 $p_i \leq i$ 的单调性)。 --- ### **建议的解题方向** 若I题涉及: - **树结构查询**:LCA模板([参考代码](https://cp-algorithms.com/graph/lca_binary_lifting.html))。 - **数学计算**:极限/级数处理(引用[4]方法)。 - **路径统计**:树上差分或DP。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.0-0.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值