自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 基于 sklearn 的均值偏移聚类算法的应用

均值偏移(Mean Shift)是一种基于密度峰值的无监督聚类算法,最早由 Fukunaga 和 Hostetler 于1975年提出。均值偏移聚类算法是通过计算数据点的局部均值来不断更新每个数据点的位置,直到所有的数据点都趋于聚集在密度较高的区域。其本质上是一种基于梯度上升的方式,通过对数据点的迭代移动找到最密集的区域,最后将数据点聚集成簇。与传统的基于距离的聚类方法(如K-means)不同,均值偏移聚类不需要预先指定簇的数量,它自动寻找数据分布的密度极值点进行聚类,能够处理非规则形状的数据分布。

2025-02-25 01:08:29 1166

原创 亲和传播聚类算法应用(Affinity Propagation)

亲和传播(Affinity Propagation,简称 AP)是一种基于“消息传递”的聚类算法,与 K-Means 等传统聚类方法不同,它不需要用户预先指定簇的数量,而是通过在数据点之间传递相似度信息来自动确定簇数。其核心思想是每个数据点都会向其他数据点发送关于是否可以作为簇中心的“责任”信息,同时也会接收来自其他数据点的“可用性”信息,从而在算法迭代中自我调整,最终找到簇中心。

2025-02-02 21:09:59 697

原创 K-means 算法在无监督学习中的应用

K-means算法是无监督学习中常用的一种聚类分析算法。它旨在根据数据点的特征将数据集分成K个簇,使得同一簇内的数据点相似度高,而不同簇之间的数据点相似度低。该算法通过寻找数据中的潜在结构来自动划分数据,广泛应用于聚类分析、图像分割和异常检测等领域。本文详细介绍了K-means算法的原理、数学模型、实现步骤,并通过三个应用方向的案例说明了K-means在无监督学习中的应用。

2025-01-07 23:55:18 1135

原创 使用 Scikit-learn 实现普通最小二乘法与非负最小二乘法

Scikit-learn 是一个功能强大的机器学习库,它提供了简单易用的接口来实现各种机器学习算法。本文将详细介绍如何使用 Scikit-learn 实现普通最小二乘法(Ordinary Least Squares, OLS)和非负最小二乘法(Non-Negative Least Squares, NNLS)。我们将对两种方法的公式、操作范围、优劣势以及结果进行对比分析。

2025-01-06 03:35:14 1023

原创 math(数学函数)

math 是 Python 标准库中的一个数学函数库,提供了各种数学运算相关的函数和常数,如三角函数、对数和指数函数、幂函数、绝对值函数等。此库还包含常用的数学常数,如圆周率π和自然常数e。除此之外,math 模块还提供了一些常用的计算功能,如阶乘、最大公约数、整数平方根等。这个库适用于基本数学运算和简单的数学计算需求。需要注意的是,math 模块中的函数不支持复数计算;如果需要处理复数,请使用 cmath 模块。

2025-01-02 23:34:47 1125

原创 办公自动化:生成国家奖学金申请审批表

国家奖学金申请是每个学年中学生们的重要事务之一。学生需要填写详细的申请信息,并且最终提交给各院系进行审批。然而,传统的手工填写和审批过程往往耗费大量的时间和精力,尤其是对于大量学生的申请,审批人员需要逐一处理。为了提升效率,我们可以利用办公自动化工具生成一份规范的国家奖学金申请审批表(模版)。

2024-11-23 22:45:49 829

原创 Faker(伪造者)

Faker是一个用于生成各种伪造数据的 Python 库,广泛应用于测试、数据填充和数据模拟的场景中。它可以生成包括姓名、地址、电话号码、公司、电子邮件、信用卡等各种类型的随机数据。此外,Faker支持多语言数据生成。

2024-11-14 18:37:24 1170 1

翻译 random(随机数)

Python的random库是用于生成随机数的标准库。它提供了各种功能,可以产生伪随机数、随机选择元素、打乱序列等。该模块实现了各种分布的伪随机数生成器。对于整数,从范围中有统一的选择。对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。为了生成角度分布,可以使用 von Mises 分布。几乎所有模块函数都依赖于基本函数random(),它在左开右闭区间内均匀生成随机浮点数。

2024-11-14 00:03:09 737

转载 Matplotlib(绘图)

Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。Matplotlib 可以用来绘制各种静态,动态,交互式的图表。Matplotlib 是一个非常强大的 Python 画图工具,我们可以使用该工具将很多数据通过图表的形式更直观的呈现出来。Matplotlib 可以绘制线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画等等。

2024-11-13 17:00:33 76

原创 爬虫案例:2345天气王历史天气获取

本项目通过爬虫获取历史天气数据,利用数据分析工具进行清洗和合并,为重庆气候趋势分析提供了可靠的数据支持。通过优化爬虫策略和代码结构,提高了爬取效率和稳定性。

2024-11-12 19:37:47 2441

原创 datetime(基本日期和时间类型)

datetime模块提供了用于处理日期和时间的类。虽然支持日期和时间算术运算,但实现的重点在于高效的属性提取,以便进行输出格式化和操作。

2024-11-11 14:08:39 1952

原创 QRcode(QR码生成器)

二维码简称 QR Code(Quick Response Code),学名为快速响应矩阵码,是二维条码的一种,由日本的 Denso Wave 公司于 1994 年发明。现随着智能手机的普及,已广泛应用于平常生活中,例如商品信息查询、社交好友互动、网络地址访问等等。qrcode 模块是 Github 上的一个开源项目,提供了生成二维码的接口。qrcode 默认使用PIL库用于生成图像。

2024-11-08 21:37:31 7620 2

原创 ER模型及构建图表

ER模型(Entity-Relationship Model)。它提供了一种直观和图形化的方式来表示实体、属性和实体之间的关系。通过使用ER模型,可以以图形化的方式表示数据库结构,包括实体、属性和实体之间的关系。ER模型提供了一种直观和易于理解的方法来描述数据库的概念和结构,为数据库设计和分析提供了基础。在ER模型的基础上,可以进一步转换为关系模型,以实际创建和管理数据库。

2024-11-04 23:27:05 1984

原创 NetworkX(网络图)

NetworkX 是 Python 中一个强大且灵活的库,专用于创建、操作和研究复杂网络(图)。它支持多种图类型,并提供丰富的算法和绘图功能,适用于社会网络分析、交通网络优化、生物网络分析等领域。

2024-08-17 21:55:43 7565 3

原创 Anaconda Distribution(版本分隔)

"Anaconda"是一个用于科学计算和数据科学的开源发行版,它包含了许多常用的 Python 库、工具和环境管理器。Anaconda 提供了一个方便的方式来安装、管理和使用 Python 软件包,以及创建和管理独立的 Python 环境。通过 Anaconda,用户可以轻松地安装和使用众多常用的 Python 库,如NumPy、Pandas、Matplotlib、SciPy 等。

2024-08-16 00:47:30 1380

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除