目录
1. 数据类型的介绍
整形家族:
char
unsigned short char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
浮点数家族:
float
double
构造类型
数组类型
int main()
{
int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };
char arr2[] = { "hello" };
printf("%d\n", arr[2]);
printf("%s\n", arr2);
return 0;
}
结构体类型 struct
枚举类型 enum
联合类型 union
指针类型
int *pi
char *pc
float *pf
void *pv
空类型
void表示空类型(无类型),通常应用于函数的返回类型、函数的参数、指针类型
//空类型
void
//函数返回类型 void test();
//函数参数 void test(void);
//指针 void* p;
2. 整形在内存中的存储
一个变量要想在内存中开辟空间,空间的大小是根据不同的类型而决定的。那数据在开辟的空间内是如何进行存储的呢?
以整形int数据示例
int a = 10;
int b = -10;
计算机中的整数有三种表示方法,即原码、反码和补码。这三种方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位负整数的三种方法各不相同。
原码:
直接将二进制按照正负数的形式翻译成二进制的形式
反码:
原码符号位不变,其它位依次取反
补码:
反码+1,如最终相加结果遇到超过32位或64位的情况,则最左边一位递进相消。
其中,正数的原码、反码、补码均相同。对于整形来说,数据存放内存中其实存放的是补码。
为什么在计算机系统中,数值一律用补码表示存储?
原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器);此外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
举例:
1 - 1;
1+(-1)
00000000000000000000000000000001 对于正数而言
00000000000000000000000000000001 原码、反码、补码
00000000000000000000000000000001 都是相同的
10000000000000000000000000000001 -1的原码
11111111111111111111111111111110 -1的反码,符号位不变,其它位按位取反
11111111111111111111111111111111 -1的补码,反码+1
使用补码,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
10000000000000000000000000000000 在补码的基础上,-1的补码符号位不变,其它取反
10000000000000000000000000000001 取反得到的结果之后,+1,又回到了原码
3. 大小端字节序介绍及判断
通过上图,我们可以看到在VS2022编译器上,int a = 10 ,理应在32位机的前提下,二进制代码为00000000 00000000 00000000 0000000a。应该是从左往右读,但是这里是从右往左读。这里就是大小端在起作用。
大端(存储)模式:是指数据的低位(如十进制的个位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中;低位→高地址;高位→低地址
小端(存储)模式:是指数据的低位(如十进制的个位)保存在内存的低地址中,而数据的高位,保存在内存的高地址中。低位→低地址;高位→高地址 ,很顺→→→小端模式
在VS2022编译器中,从左→右是低地址→高地址,故为小端(存储)模式。
相关习题训练
1)程序的输出结果?
#include <stdio.h>
int main()
{
char a = -1;
char b = -128;
signed char c = -1;
unsigned char d = -1;
char e = a + c;
printf("a=%d\nc=%d\nd=%d\n", a, c, d);
printf("b=%u\n", b);
printf("b=%d\n", e);
return 0;
}
为什么程序会出现这种输出结果呢?
答:在于整形提升
补充知识点
1)什么是整形提升?
在表达式中,字符和短整型操作数在使用之前被转换成普通整形int,这种转换叫做整形提升。整形提升的对象一般作用于char类型(占用1个字节)和short(占用2个 字节),它们在运算时都会被提升为占用4个字节的int类型。
2)为什么会有整形提升?
表达式的整形运算都要在CPU的相应运算器内执行,CPU内的运算器(ALU)的操作数的字节长度一般就是int的字节长度,同时也是CPU的通用寄存器的长度。通用CPU是难以直接实现两个8比特字节直接相加运算,所以,表达式中各种长度可能小于int长度的整形值(char、short),都必须先转换为int或unsigned int,然后才能送入CPU去执行运算。即使是两个char类型的数值相加也要在CPU上先转换为CPU内整形操作数的标准长度。
3)如何进行整形提升?
整形提升分为有符号和无符号两种。
前提:请先按照32位/64位补齐你所看到的数值的原码对应值,然后再找补码,进而截断。不是一上来就原码,然后原码开始补。如:char -1 ,默认有符号,原码截断00000001,补0 ,就错了。
有符号的:整形提升时是按照变量的补码被截断时的最高位是什么进行补位的。如果截断后最高位(二进制最左边一位)为1则在左侧补1,如果是0则在左边补0,补够32位或64位为止。
无符号的 :直接在被截断的前面补0即可。
以上述习题1)程序为例:
#include <stdio.h>
int main()
{
char a = -1;
//原码:10000000 00000000 00000000 00000001
//反码:11111111 11111111 11111111 11111110
//补码:11111111 11111111 11111111 11111111
//截断:11111111
//整形提升:有符号的,左侧补1,输出为%d,有符号
// 11111111 11111111 11111111 11111111
//此时转换为原码结果为 -1
char b = -128;
//原码:10000000 00000000 00000000 10000000
//反码:11111111 11111111 11111111 01111111
//补码:11111111 11111111 11111111 10000000
//截断:10000000
//整形提升:有符号的,左侧补1,输出为%u,无符号
// 11111111 11111111 11111111 10000000
// 输出为无符号的整数,即此时1不表示负号
// 则为正,正整数,三码合一
//此时转换为原码结果为 4,294,967,168
signed char c = -1;
//原码:10000000 00000000 00000000 00000001
//反码:11111111 11111111 11111111 11111110
//补码:11111111 11111111 11111111 11111111
//截断:11111111
//整形提升:有符号的,左侧补1,输出为%d,有符号
// 11111111 11111111 11111111 11111111
//此时转换为原码结果为 -1
unsigned char d = -1;
//原码:10000000 00000000 00000000 00000001
//反码:11111111 11111111 11111111 11111110
//补码:11111111 11111111 11111111 11111111
//截断:11111111
//整形提升:无符号的,左侧补0,输出为%d,有符号
// 00000000 00000000 00000000 11111111 补码
// 正整数 三码合一 原码 = 反码 = 补码
//此时转换为原码结果为 255
char e = a + c;
//即使是两个char类型的数值相加也要在CPU上先转换为CPU内整形操作数的标准长度
//先对a进行整形提升
//原码:10000000 00000000 00000000 00000001
//反码:11111111 11111111 11111111 11111110
//补码:11111111 11111111 11111111 11111111
//截断:11111111
//整形提升:有符号的,左侧补1,输出为%d,有符号
// 11111111 11111111 11111111 11111111 补码
//同理,对c进行整形提升,得
// 11111111 11111111 11111111 11111111 补码
//两者相加
// 11111111 11111111 11111111 11111110 补码
//反码:11111111 11111111 11111111 11111101 -1
//原码:10000000 00000000 00000000 00000010 取反 →→ -2
printf("a=%d\nc=%d\nd=%d\n", a, c,d);
printf("b=%u\n", b);
printf("b=%d\n", e);
return 0;
}
4)有符号位的char的取值范围为-128~127,二进制补码代码范围:00000000~11111111,其中,10000000表示-128.
5)当有符号的数和无符号的数进行算术运算的时候,有符号的数会先转变为无符号的数再进行算术运算。
4. 浮点型在内存中的存储
常见的浮点数:3.14159;1E10(1.0*10^10);float; double; long double类型。浮点型表示的范围:
对于整形家族:int ,short , char 它们的变量创建取值范围定位在#include<limits.h>头文件中;
对于浮点型家族:float, double 它们的变量创建取值范围定位在#include<float.h>头文件中。
浮点数的存入和读取遵循不同的规则:
存入:
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
- (-1)^S*M*2^E
- (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
- M表示有效数字,大于等于1,小于2
- 2^E表示指数位
举例:
十进制5.5,写成二进制是101.1,其中2^-1=0.5;相当于1.011*2^2。按照存入格式,此时M=1.011;E=2;S=0。
IEEE 754 规定:
对于32位的浮点数(单精度浮点数 float 存储),最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。
对于64为的浮点数(双精度浮点数 double 存储),最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
此外,对于有效数字M,引文1≤M<2,也就是说,M可以写成1.xxxxxxxxx的形式,其中xxxxxxxxx表示小数部分。IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxxxxx部分,比如1.011,只保存011,等到读取的时候,再把第一位的1加上去,这样做的目的是节省有效数字位,将1去掉后,等于可以保存24位有效数字。
至于指数E,也有相关特殊规定。由于E为 unsigned int 类型(0~255),但是指数实际会有负数,为此,IEEE 754 规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127,对于11位的E,这个中间数是1023。例如,2^10的E是10,保存成32位浮点数时,必须保存成10+127=137,即10001001。
读取:
在浮点数从内存中取出时,分为3种情况:
E不全为0或不全为1
此时,浮点数在取出时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
E全为0
这时,浮点数的指数E=1-127(或1-1023)即为真实值。
有效数字M不再加上第一位的1,而是还原为0.xxxxxxxxx的小数,这样做是为了表示±0,以及接近于0很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S)。
举例:
#include <stdio.h>
int main()
{
int n = 9;//4byte
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
//这里是以浮点数形式读取
//此时9的二进制数列为
//00000000 00000000 00000000 00001001
//按照浮点数读取进行 切分
//0 00000000 00000000000000000001001 此时S=0,E全为0,M
//表示极小
*pFloat = 9.0;
printf("num的值为:%d\n", n);
//这里考察以浮点数的形式存入
//此时9.0的二进制数列为 1001.0
//0 10000010 00100000000000000000000
//以正整数的形式读取
//01000001000100000000000000000000
//因此读取出来的数很大
printf("*pFloat的值为:%f\n", *pFloat);//9.0
return 0;
}