数据的存储学习记录

目录

1. 数据类型的介绍

2. 整形在内存中的存储

3. 大小端字节序介绍及判断

相关习题训练

补充知识点

4. 浮点型在内存中的存储



1. 数据类型的介绍

整形家族:

char

        unsigned short char

        signed char

short

        unsigned short [int]

        signed short [int]

int

        unsigned int

        signed int

long

        unsigned long [int]

        signed long [int]

浮点数家族:

        float

        double

构造类型

        数组类型     

int main()
{
	int arr[10] = { 0,1,2,3,4,5,6,7,8,9 };
	char arr2[] = { "hello" };
	printf("%d\n", arr[2]);
	printf("%s\n", arr2);
	return 0;
}

        结构体类型 struct

        枚举类型 enum

        联合类型 union

指针类型

        int *pi

        char *pc

        float *pf

        void *pv

空类型

        void表示空类型(无类型),通常应用于函数的返回类型、函数的参数、指针类型

//空类型
void 
//函数返回类型 void test();
//函数参数 void test(void);
//指针 void* p;

2. 整形在内存中的存储

一个变量要想在内存中开辟空间,空间的大小是根据不同的类型而决定的。那数据在开辟的空间内是如何进行存储的呢?

以整形int数据示例

int a = 10;
int b = -10;

计算机中的整数有三种表示方法,即原码、反码和补码。这三种方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位负整数的三种方法各不相同。

原码:

直接将二进制按照正负数的形式翻译成二进制的形式

反码:

原码符号位不变,其它位依次取反

补码:

反码+1,如最终相加结果遇到超过32位或64位的情况,则最左边一位递进相消。

其中,正数的原码、反码、补码均相同。对于整形来说,数据存放内存中其实存放的是补码。

为什么在计算机系统中,数值一律用补码表示存储?

原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器);此外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

举例:

1 - 1;
1+(-1)
	 
00000000000000000000000000000001		对于正数而言
00000000000000000000000000000001		原码、反码、补码
00000000000000000000000000000001		都是相同的
	
10000000000000000000000000000001		-1的原码
11111111111111111111111111111110		-1的反码,符号位不变,其它位按位取反
11111111111111111111111111111111		-1的补码,反码+1

使用补码,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

10000000000000000000000000000000	    在补码的基础上,-1的补码符号位不变,其它取反	
10000000000000000000000000000001		取反得到的结果之后,+1,又回到了原码

3. 大小端字节序介绍及判断

通过上图,我们可以看到在VS2022编译器上,int a = 10 ,理应在32位机的前提下,二进制代码为00000000 00000000 00000000 0000000a。应该是从左往右读,但是这里是从右往左读。这里就是大小端在起作用。

大端(存储)模式:是指数据的低位(如十进制的个位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中;低位→高地址;高位→低地址

小端(存储)模式:是指数据的低位(如十进制的个位)保存在内存的低地址中,而数据的高位,保存在内存的高地址中。低位→低地址;高位→高地址 ,很顺→→→小端模式

在VS2022编译器中,从左→右是低地址→高地址,故为小端(存储)模式。


相关习题训练

1)程序的输出结果?

#include <stdio.h>
int main()
{
    char a = -1;
    char b = -128;
    signed char c = -1;
    unsigned char d = -1;
    char e = a + c;
    printf("a=%d\nc=%d\nd=%d\n", a, c, d);
    printf("b=%u\n", b);
    printf("b=%d\n", e);
    return 0;
}

为什么程序会出现这种输出结果呢?

答:在于整形提升


补充知识点

1)什么是整形提升?

在表达式中,字符和短整型操作数在使用之前被转换成普通整形int,这种转换叫做整形提升。整形提升的对象一般作用于char类型(占用1个字节)和short(占用2个 字节),它们在运算时都会被提升为占用4个字节的int类型。

2)为什么会有整形提升?

表达式的整形运算都要在CPU的相应运算器内执行,CPU内的运算器(ALU)的操作数的字节长度一般就是int的字节长度,同时也是CPU的通用寄存器的长度。通用CPU是难以直接实现两个8比特字节直接相加运算,所以,表达式中各种长度可能小于int长度的整形值(char、short),都必须先转换为int或unsigned int,然后才能送入CPU去执行运算。即使是两个char类型的数值相加也要在CPU上先转换为CPU内整形操作数的标准长度。

3)如何进行整形提升?

整形提升分为有符号和无符号两种。

前提:请先按照32位/64位补齐你所看到的数值的原码对应值,然后再找补码,进而截断。不是一上来就原码,然后原码开始补。如:char -1 ,默认有符号,原码截断00000001,补0 ,就错了。

有符号的:整形提升时是按照变量的补码被截断时的最高位是什么进行补位的。如果截断后最高位(二进制最左边一位)为1则在左侧补1,如果是0则在左边补0,补够32位或64位为止。

无符号的 :直接在被截断的前面补0即可。

以上述习题1)程序为例:

#include <stdio.h>
int main()
{
	char a = -1;
	//原码:10000000 00000000 00000000 00000001
	//反码:11111111 11111111 11111111 11111110
	//补码:11111111 11111111 11111111 11111111
	//截断:11111111
	//整形提升:有符号的,左侧补1,输出为%d,有符号
	//      11111111 11111111 11111111 11111111
	//此时转换为原码结果为 -1

	char b = -128;
	//原码:10000000 00000000 00000000 10000000
	//反码:11111111 11111111 11111111 01111111
	//补码:11111111 11111111 11111111 10000000
	//截断:10000000
	//整形提升:有符号的,左侧补1,输出为%u,无符号
	//      11111111 11111111 11111111 10000000
	//		输出为无符号的整数,即此时1不表示负号
	//		则为正,正整数,三码合一
	//此时转换为原码结果为 4,294,967,168

	signed char c = -1;
	//原码:10000000 00000000 00000000 00000001
	//反码:11111111 11111111 11111111 11111110
	//补码:11111111 11111111 11111111 11111111
	//截断:11111111
	//整形提升:有符号的,左侧补1,输出为%d,有符号
	//      11111111 11111111 11111111 11111111
	//此时转换为原码结果为 -1

	unsigned char d = -1;
	//原码:10000000 00000000 00000000 00000001
	//反码:11111111 11111111 11111111 11111110
	//补码:11111111 11111111 11111111 11111111
	//截断:11111111
	//整形提升:无符号的,左侧补0,输出为%d,有符号
	//      00000000 00000000 00000000 11111111 补码
	//		正整数 三码合一  原码 = 反码 = 补码
	//此时转换为原码结果为 255

	char e = a + c;
	//即使是两个char类型的数值相加也要在CPU上先转换为CPU内整形操作数的标准长度
	//先对a进行整形提升
	//原码:10000000 00000000 00000000 00000001
	//反码:11111111 11111111 11111111 11111110
	//补码:11111111 11111111 11111111 11111111
	//截断:11111111
	//整形提升:有符号的,左侧补1,输出为%d,有符号
	//      11111111 11111111 11111111 11111111 补码 
	//同理,对c进行整形提升,得
	//      11111111 11111111 11111111 11111111 补码 
	//两者相加
	//      11111111 11111111 11111111 11111110 补码 
	//反码:11111111 11111111 11111111 11111101 -1 
	//原码:10000000 00000000 00000000 00000010 取反 →→ -2
	printf("a=%d\nc=%d\nd=%d\n", a, c,d);
	printf("b=%u\n", b);
	printf("b=%d\n", e);
	return 0;
}

4)有符号位的char的取值范围为-128~127,二进制补码代码范围:00000000~11111111,其中,10000000表示-128.

5)当有符号的数和无符号的数进行算术运算的时候,有符号的数会先转变为无符号的数再进行算术运算。


4. 浮点型在内存中的存储

常见的浮点数:3.14159;1E10(1.0*10^10);float; double; long double类型。浮点型表示的范围:

对于整形家族:int ,short , char 它们的变量创建取值范围定位在#include<limits.h>头文件中;

对于浮点型家族:float, double 它们的变量创建取值范围定位在#include<float.h>头文件中。

浮点数的存入和读取遵循不同的规则:

存入:

根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:

  • (-1)^S*M*2^E
  • (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
  • M表示有效数字,大于等于1,小于2
  • 2^E表示指数位        

举例:

十进制5.5,写成二进制是101.1,其中2^-1=0.5;相当于1.011*2^2。按照存入格式,此时M=1.011;E=2;S=0。

IEEE 754 规定:

对于32位的浮点数(单精度浮点数 float 存储),最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。

对于64为的浮点数(双精度浮点数 double 存储),最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

此外,对于有效数字M,引文1≤M<2,也就是说,M可以写成1.xxxxxxxxx的形式,其中xxxxxxxxx表示小数部分。IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxxxxx部分,比如1.011,只保存011,等到读取的时候,再把第一位的1加上去,这样做的目的是节省有效数字位,将1去掉后,等于可以保存24位有效数字。

至于指数E,也有相关特殊规定。由于E为 unsigned int 类型(0~255),但是指数实际会有负数,为此,IEEE 754 规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127,对于11位的E,这个中间数是1023。例如,2^10的E是10,保存成32位浮点数时,必须保存成10+127=137,即10001001。


读取:

在浮点数从内存中取出时,分为3种情况:

E不全为0或不全为1

此时,浮点数在取出时,指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

E全为0

这时,浮点数的指数E=1-127(或1-1023)即为真实值。

有效数字M不再加上第一位的1,而是还原为0.xxxxxxxxx的小数,这样做是为了表示±0,以及接近于0很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位S)。

举例:

#include <stdio.h>
int main()
{
	int n = 9;//4byte
	float* pFloat = (float*)&n;
	printf("n的值为:%d\n", n);
	printf("*pFloat的值为:%f\n", *pFloat);
	//这里是以浮点数形式读取
	//此时9的二进制数列为
	//00000000 00000000 00000000 00001001
	//按照浮点数读取进行 切分 
	//0 00000000 00000000000000000001001 此时S=0,E全为0,M
	//表示极小
	*pFloat = 9.0;
	printf("num的值为:%d\n", n);
	//这里考察以浮点数的形式存入
	//此时9.0的二进制数列为 1001.0
	//0 10000010 00100000000000000000000
	//以正整数的形式读取
	//01000001000100000000000000000000
	//因此读取出来的数很大
	printf("*pFloat的值为:%f\n", *pFloat);//9.0
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值