超级变变变

一月23日

Description

经过一系列的游戏之后,你终于迎来了今天的作业,第一个作业是预习一个超级美好的函数f(x),描述如下。

f ( x ) = { x − 1 ( x m o d    2 ≠ 0 ) x 2 ( x m o d    2 = 0 ) f(x)=\begin{cases} x-1(x \mod 2 \neq 0)\\ \dfrac x 2 (x\mod2=0) \end{cases} f(x)={x1(xmod2̸=0)2x(xmod2=0)

为了研究这个函数的性质,你决定定义一次变化为

x = f ( x ) 。 x=f(x)。 x=f(x)
若x就经过若干次变化为k,则你就会觉得这是一个k变变数。
现在既然你已经这么觉得了,那就只好给定A,B,求有多少个A<=x<=B是k变变数了。

Input

 输入包含三行
 第一行为一个整数k
 第二行为一个整数A
 第三行为一个整数B。

Output

 输出仅一行,表示答案。

Sample Input 1

13
12345
67890123

Sample Output 1

8387584

Sample Input 2

1
234567
1234567

Sample Output 2

1000001

Data Constraint

对于50%的数据,0<=k,A,B<=10^6

对于100%的数据,0<=k,A,B<=10^18 A<=B

解题报告

  • 【我的方法】

    毫无疑问想不出正解,暴力,时间复杂度为O(BlogB),然后50分。。。

  • 【大佬正解】

    经过推导,我们可以轻易地发现函数 f ( x ) f(x) f(x)的性质,就是每次都会把二进制的最后一位去掉或变成0.对二进制为前面的数字是没有影响的。

    所以我们如果要得到k,则二进制表示的前缀(与k等长的前缀)必须是k或者k+1(若k为偶数)。则我们可以枚举数字的二进制长度,答案为[k]00…0~[kk]11.1,以上为二进制表示.[k]为k的二进制表示,[kk]为k的二进制表示或k+1的二进制表示(若k为偶数)

    这比较难以理解,举个例子:

    若k为2,二进制表示为10,那可以得到2的数字为[10,11]U[100,111]U[1000,1111]…

    若k为5,二进制表示为101,那为[101,101]U[1010,1011]U[10100,10111]….

    对于每个区间看看有多少数字在[A,B]内就可以了。

    然后AC

考点

  1. 找规律
  2. 位运算
  3. 暴力

复习用 de 代码

#include<cstdio>
#include<algorithm>
using namespace std;

long long a,b,k,cnt,flo,cei;

int main()
{
	scanf("%lld%lld%lld",&k,&a,&b);
	flo=cei=k;
	if(k%2==0) cei++;
	if(k==0 || k==1)
	{
		printf("%lld",b-a+1);
		return 0;
	}
	if(k<=b && k>=a) cnt++;
	while(flo*2<=b)
	{
		flo*=2;cei*=2;++cei;
		if(cei<=a) continue;
		cnt+=min(cei,b)-max(a,flo)+1;
	}
	printf("%lld",cnt);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值