一月23日
Description
经过一系列的游戏之后,你终于迎来了今天的作业,第一个作业是预习一个超级美好的函数f(x),描述如下。
f ( x ) = { x − 1 ( x m o d    2 ≠ 0 ) x 2 ( x m o d    2 = 0 ) f(x)=\begin{cases} x-1(x \mod 2 \neq 0)\\ \dfrac x 2 (x\mod2=0) \end{cases} f(x)={x−1(xmod2̸=0)2x(xmod2=0)
为了研究这个函数的性质,你决定定义一次变化为
x
=
f
(
x
)
。
x=f(x)。
x=f(x)。
若x就经过若干次变化为k,则你就会觉得这是一个k变变数。
现在既然你已经这么觉得了,那就只好给定A,B,求有多少个A<=x<=B是k变变数了。
Input
输入包含三行
第一行为一个整数k
第二行为一个整数A
第三行为一个整数B。
Output
输出仅一行,表示答案。
Sample Input 1
13
12345
67890123
Sample Output 1
8387584
Sample Input 2
1
234567
1234567
Sample Output 2
1000001
Data Constraint
对于50%的数据,0<=k,A,B<=10^6
对于100%的数据,0<=k,A,B<=10^18 A<=B
解题报告
-
【我的方法】
毫无疑问想不出正解,暴力,时间复杂度为O(BlogB),然后50分。。。
-
【大佬正解】
经过推导,我们可以轻易地发现函数 f ( x ) f(x) f(x)的性质,就是每次都会把二进制的最后一位去掉或变成0.对二进制为前面的数字是没有影响的。
所以我们如果要得到k,则二进制表示的前缀(与k等长的前缀)必须是k或者k+1(若k为偶数)。则我们可以枚举数字的二进制长度,答案为[k]00…0~[kk]11.1,以上为二进制表示.[k]为k的二进制表示,[kk]为k的二进制表示或k+1的二进制表示(若k为偶数)
这比较难以理解,举个例子:
若k为2,二进制表示为10,那可以得到2的数字为[10,11]U[100,111]U[1000,1111]…
若k为5,二进制表示为101,那为[101,101]U[1010,1011]U[10100,10111]….
对于每个区间看看有多少数字在[A,B]内就可以了。
然后AC
考点
- 找规律
- 位运算
暴力
复习用 de 代码
#include<cstdio>
#include<algorithm>
using namespace std;
long long a,b,k,cnt,flo,cei;
int main()
{
scanf("%lld%lld%lld",&k,&a,&b);
flo=cei=k;
if(k%2==0) cei++;
if(k==0 || k==1)
{
printf("%lld",b-a+1);
return 0;
}
if(k<=b && k>=a) cnt++;
while(flo*2<=b)
{
flo*=2;cei*=2;++cei;
if(cei<=a) continue;
cnt+=min(cei,b)-max(a,flo)+1;
}
printf("%lld",cnt);
return 0;
}