【题解】绍兴一中-7.13-T3

博客讲述一道题的解题过程,起初用暴力法得20分,优化后得40分。正解是用dp处理模拟线段树,后发现将暴力法加记忆化,设计二维状态dp[t][num],转移与dfs相同,即可满分通过。

传送门
真是气啊!
这道题一开始我打的暴力,20分的

然后想着优化一下,发现了一个了不得的规律
如果把一个 P 1 P_1 P1确定, P i ( i &gt; 1 ) P_i(i&gt;1) Pi(i>1)的取值只能是 P i − l o w b i t ( i − 1 ) P_{i-lowbit(i-1)} Pilowbit(i1) x o r xor xor x ( l o w b i t ( i − 1 ) &lt; = x &lt; 2 ∗ l o w b i t ( i − 1 ) ) x(lowbit(i-1)&lt;=x&lt;2*lowbit(i-1)) x(lowbit(i1)<=x<2lowbit(i1))

然后,我就写了优化版暴力。。。发现能过40分,心满意足。。

正解是dp处理一个模拟线段树的东西
然后,以为神仙说他的算法秒了std,一听,WTF!
这不是我的暴力想法吗,他也想到了lowbit这上面

然后我发现只要把我自己的暴力继续优化,做一个小学生都会的改动,把dfs里面加一个记忆化,我就过了!!
就是稍微设计一下状态,需要两维
d p [ t ] [ n u m ] 表 示 还 剩 t 个 没 选 , 上 一 个 选 的 是 n u m 的 答 案 dp[t][num]表示还剩t个没选,上一个选的是num的答案 dp[t][num]tnum
转移就跟dfs一样

40分暴力Code:

#include <bits/stdc++.h>
#define maxn 1010
#define inf 2147483647
using namespace std;
int a[maxn], n, k, ans, w[maxn][maxn];

inline int read(){
    int s = 0, w = 1;
    char c = getchar();
    for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
    for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
    return s * w;
}

int lowbit(int x){ return x & -x; }

void Do(){
    int sum = 0;
    for (int i = 1; i < n; ++i) sum += w[a[i]][a[i + 1]];
    ans = min(ans, sum);
}

void dfs(int k){
    if (k > n) Do(); else{
        int x = lowbit(k - 1);
        for (int i = x; i < (x << 1); ++i){
            a[k] = a[k - x] ^ i;
            dfs(k + 1);
        }
    }
}

int main(){
    k = read();
    n = 1;
    for (int i = 1; i <= k; ++i) n <<= 1;
    for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) w[i][j] = read();
    ans = inf;
    for (int i = 0; i < n; ++i){
        a[1] = i; dfs(2);
    }
    printf("%d\n", ans);
    return 0;
}

小改动的满分Code:

#include <bits/stdc++.h>
#define maxn 1010
#define inf 2147483647
using namespace std;
int dp[maxn][maxn], n, k, ans, w[maxn][maxn];

inline int read(){
    int s = 0, w = 1;
    char c = getchar();
    for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
    for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
    return s * w;
}

int lowbit(int x){ return x & -x; }

int dfs(int t, int num){
	if (t < 1) return 0;
	if (dp[t][num] != -1) return dp[t][num];
	dp[t][num] = 1e9;
	int x = lowbit(t);
	for (int i = x; i < (x << 1); ++i)
		dp[t][num] = min(dp[t][num], w[num][num ^ i] + dfs(t - 1, num ^ i));
	return dp[t][num];
}

int main(){
    k = read();
    n = 1 << k;
    for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) w[i][j] = read();
    memset(dp, -1, sizeof(dp));
    printf("%d\n", dfs(n, n));;
    return 0;
}
### 东方博宜 OJ 1765 题解或解题思路 由于当前引用中并未直接提及东方博宜 OJ 平台编号为 1765 的题目内容及解法,以下将基于已有的引用信息和常规竞赛编程问题的解决方法,提供一种可能的分析与解答框架。 #### 可能的题目类型 根据东方博宜 OJ 平台的特点以及引用中的其他题目[^1],可以推测 1765 题目可能涉及以下领域之一: - 数据结构操作(如数组、链表、栈等) - 算法设计(如排序、搜索、动态规划等) - 字符串处理 - 数学计算 假设该题目属于常见算法题型之一,以下将从数据结构操作的角度进行分析。 #### 数据结构操作示例 若题目要求对一个序列进行多次操作(如插入、删除、排序等),可以参考引用 [4] 中的代码逻辑。以下是类似的实现方式: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, m; // n: 初始序列长度, m: 操作次数 cin >> n >> m; vector<int> v; // 存储初始序列 for (int i = 0; i < n; i++) { int opt; cin >> opt; v.push_back(opt); } for (int i = 1; i <= m; i++) { int opt, x; cin >> opt >> x; vector<int>::iterator it = v.begin(); if (opt == 1) { // 插入 int y; cin >> y; v.insert(it + x, y); } else if (opt == 2) { // 删除 v.erase(it + x - 1); } else if (opt == 3) { // 排序 int y; cin >> y; sort(it + x - 1, it + y); } else if (opt == 4) { // 反转 int y; cin >> y; reverse(it + x - 1, it + y); } else { // 自定义操作 int y, z; cin >> y >> z; for (int j = --x; j < y; j++) { if (v[j] == z) { v.erase(it + j); j--; y--; } } } } for (int i = 0; i < v.size(); i++) { cout << v[i] << " "; } return 0; } ``` 此代码适用于多操作场景下的序列管理问题,具体功能已在注释中标明[^4]。 #### 字符串处理示例 如果题目涉及字符串操作,例如生成特定格式的输出,可以参考引用 [5] 的代码逻辑。以下是类似的应用: ```cpp #include <bits/stdc++.h> using namespace std; int main() { char c; int n; cin >> c >> n; for (int i = 1; i <= n; i++) { for (int j = 1; j <= n - i; j++) { cout << &#39; &#39;; } for (int j = 1; j <= 2 * i - 1; j++) { cout << char(c + j - 1); } cout << endl; } return 0; } ``` 此代码用于生成字符三角形,可根据实际题目需求调整逻辑[^5]。 #### 解题思路总结 在没有明确题目描述的情况下,建议从以下几个方面入手: 1. 分析输入输出格式,明确问题核心。 2. 根据问题特点选择合适的数据结构或算法。 3. 编写代码时注意边界条件和特殊情况的处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值