作诗
问题描述
神犇SJY虐完HEOI之后给傻×LYD出了一题:
SHY是T国的公主,平时的一大爱好是作诗。
由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章,阅读M次,每次只阅读其中连续的一段[l,r],从这一段中选出一些汉字构成诗。因为SHY喜欢对偶,所以SHY规定最后选出的每个汉字都必须在[l,r]里出现了正偶数次。而且SHY认为选出的汉字的种类数(两个一样的汉字称为同一种)越多越好(为了拿到更多的素材!)。于是SHY请LYD安排选法。
LYD这种傻×当然不会了,于是向你请教……
问题简述:N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次。
输入格式
输入第一行三个整数n、c以及m。表示文章字数、汉字的种类数、要选择M次。
第二行有n个整数,每个数Ai在[1, c]间,代表一个编码为Ai的汉字。
接下来m行每行两个整数l和r,设上一个询问的答案为ans(第一个询问时ans=0),令L=(l+ans)mod n+1, R=(r+ans)mod n+1,若L>R,交换L和R,则本次询问为[L,R]。
输出格式
输出共m行,每行一个整数,第i个数表示SHY第i次能选出的汉字的最多种类数。
样例输入
5 3 5
1 2 2 3 1
0 4
1 2
2 2
2 3
3 5
样例输出
2
0
0
0
1
提示
1<=n,c,m<=10^5
强制在线,用分块处理。
首先,如果
L
,
注意到为了算出答案,需要知道每种颜色出现的次数,但是每个位置去算肯定会超时,注意到询问可以分成三个部分,
L
所在的块,
首先处理中间块的出现了正偶数次的数有多少。显然需要预处理。
那么令
F[i][j]
表示从第
i
块到第
然后考虑如何知道
L
,
那么令
G[i][j]
表示
[1,i]
块中数字
j
出现的次数,那么同样可以
于是就可以处理不在同一块的情况了,先令
Sum
为中间块的答案,每次只需要看
L
,
代码:
#include<stdio.h>
#include<cmath>
#include<cstring>
#define M 100005
using namespace std;
int n,c,m,S,N,ans,A[M],F[333][333],G[333][M],cnt[M],T[M],Q[M],ID[M];
int GS(int x,int y,int t)
{
int l=ID[x];
int r=ID[y];
int sum=0,p,q,i,j;
if(l==r)
{
for(i=x;i<=y;i++)
{
if(T[A[i]]!=t)cnt[A[i]]=0,T[A[i]]=t;
if(!(cnt[A[i]]&1)&&cnt[A[i]])sum--;
cnt[A[i]]++;
if(!(cnt[A[i]]&1))sum++;
}
return sum;
}
if(l+1<=r-1)sum=F[l+1][r-1];
for(i=x;i<=l*S&&i<=n;i++)
{
if(T[A[i]]!=t)cnt[A[i]]=0,T[A[i]]=t;
p=cnt[A[i]];
if(l+1<=r-1)p+=G[r-1][A[i]]-G[l][A[i]];
if(p&&(!(p&1)))sum--;
cnt[A[i]]++;p++;
if(p&&(!(p&1)))sum++;
}
for(i=y;i>(r-1)*S;i--)
{
if(T[A[i]]!=t)cnt[A[i]]=0,T[A[i]]=t;
p=cnt[A[i]];
if(l+1<=r-1)p+=G[r-1][A[i]]-G[l][A[i]];
if(p&&(!(p&1)))sum--;
cnt[A[i]]++;p++;
if(p&&(!(p&1)))sum++;
}
return sum;
}
int main()
{
int i,j,k,p,x,y;
scanf("%d%d%d",&n,&c,&m);
for(i=1;i<=n;i++)scanf("%d",&A[i]);
S=sqrt(n);N=(n-1)/S+1;
for(i=1;i<=n;i++)ID[i]=(i-1)/S+1;//预处理块的id
for(i=1;i<=N;i++)
for(j=(i-1)*S+1;j<=n;j++)//预处理F[i][j]
{
p=ID[j];
if(j%S==1)F[i][p]=F[i][p-1];
if(Q[A[j]]!=i)Q[A[j]]=i,cnt[A[j]]=0;
if(!(cnt[A[j]]&1)&&cnt[A[j]])F[i][p]--;
cnt[A[j]]++;
if(!(cnt[A[j]]&1))F[i][p]++;
}
memset(cnt,0,sizeof(cnt));
for(i=1;i<=n;i++)//预处理G[i][j]
{
cnt[A[i]]++;
if(i%S==0||i==n)
{
p=ID[i];
for(k=1;k<=c;k++)G[p][k]=cnt[k];
}
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
x=(x+ans)%n+1;
y=(y+ans)%n+1;
if(x>y)x^=y^=x^=y;
ans=GS(x,y,i);
printf("%d\n",ans);
}
}