NKOJ 4000 (AHOI 2013)差异(后缀自动机/后缀数组+线段树/单调队列)

P4000 [Ahoi2013]差异

问题描述

这里写图片描述

输入格式

一行,一个字符串S

输出格式

一行,一个整数,表示所求值

样例输入

cacao

样例输出

54

提示

2<=N<=500000,S由小写英文字母组成


还是先说优美的自动机做法,将字符串反过来建立后缀自动机,那么后缀的前缀变成前缀的后缀,那么变成在后缀自动机parent树上求LCA

考虑到所有的LCP要求和,那么考虑每一个节点会多少次被当做LCA,显然如果统计出每颗子树Right集合的大小,即子树表示了多少个前缀,那么两两子树的前缀数相乘求和就是当前点被当做LCA的次数。因为不同子树中的点的LCA一定是当前节点。

然后还要考虑选择了子树中的一个点和当前点的情况,此时需要注意到统计Right集合时,复制出来的点并不代表一次新的出现位置,因此只有当当前点不是复制的点时,才加上每个子树的前缀数。


代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 1000005
using namespace std;
char s[N];
long long Ans;
int n,m,tot=1,las=1,rt=1,Max[N],pra[N],son[N][27],v[N];
int TOT,LA[N],NE[N],EN[N];
int NP(int x)
{
    Max[++tot]=x;
    return tot;
}
void Ins(int t)
{
    int p=las,q,np,nq;
    np=NP(Max[p]+1);v[np]=1;
    while(p&&!son[p][t])son[p][t]=np,p=pra[p];
    if(!p)pra[np]=rt;
    else
    {
        q=son[p][t];
        if(Max[q]==Max[p]+1)pra[np]=q;
        else 
        {
            nq=NP(Max[p]+1);
            memcpy(son[nq],son[q],sizeof(son[q]));
            pra[nq]=pra[q];
            pra[q]=pra[np]=nq;
            while(son[p][t]==q)son[p][t]=nq,p=pra[p];
        }
    }
    las=np;
}
void ADD(int x,int y)
{
    TOT++;
    EN[TOT]=y;
    NE[TOT]=LA[x];
    LA[x]=TOT;
}
void DFS(int x)
{
    int i,y;long long tmp=0,tt=v[x];
    for(i=LA[x];i;i=NE[i])
    {
        y=EN[i];DFS(y);
        v[x]+=v[y];
        tmp+=1ll*v[y]*tt;
        tt+=v[y];
    }
    Ans+=1ll*tmp*Max[x];
}
int main()
{
    int i,j;
    scanf("%s",s);
    n=strlen(s);
    for(i=0;i<n;i++)Ins(s[i]-'a');
    for(i=1;i<=tot;i++)ADD(pra[i],i);
    DFS(rt);printf("%lld",1ll*n*(n+1)/2*(n-1)-Ans*2);
}

然后是略微麻烦的后缀数组做法。
优秀的思路是考虑每一个Height有多少次被作为LCP加入答案,那么显然需要找到左右第一个小于他的位置。用单调队列/栈即可。但是需要注意由于Height相同而产生的重复计算。

一个更粗暴的想法是直接用线段树维护当前的已经求出的LCP值,每次讨论一个新的Height时,把大于他的LCP值变成当前的Height,然后新加入一个Height,然后对整颗线段树求和累加到答案上即可。


代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 555555
using namespace std;
char s[N];
int n,SA[N],H[N],Rank[N];
int wa[N],wb[N],T[N];
int tot,ls[N*4],rs[N*4],lazy[N*4],cnt[N*4];
ll sum[N*4];
bool cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void GSA(char *r,int *sa,int a,int b)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0;i<a;i++)T[x[i]=r[i]]++;
    for(i=1;i<b;i++)T[i]+=T[i-1];
    for(i=a-1;i>=0;i--)sa[--T[x[i]]]=i;
    for(p=1,j=1;p<a;j<<=1,b=p)
    {
        for(p=0,i=a-j;i<a;i++)y[p++]=i;
        for(i=0;i<a;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
        for(i=0;i<b;i++)T[i]=0;
        for(i=0;i<a;i++)T[x[y[i]]]++;
        for(i=1;i<b;i++)T[i]+=T[i-1];
        for(i=a-1;i>=0;i--)sa[--T[x[y[i]]]]=y[i];
        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<a;i++)
        x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
}
void GH(char *r,int *sa,int a)
{
    int i,j,k=0;
    for(i=1;i<=a;i++)Rank[sa[i]]=i;
    for(i=0;i<a;H[Rank[i++]]=k)
    for(k?k--:0,j=sa[Rank[i]-1];r[i+k]==r[j+k];k++);
}
void PD(int p)
{
    lazy[ls[p]]=lazy[rs[p]]=1;lazy[p]=0;
    sum[ls[p]]=sum[rs[p]]=cnt[ls[p]]=cnt[rs[p]]=0;
}
int BT(int x,int y)
{
    int p=++tot;
    if(x<y)
    {
        int mid=x+y>>1;
        ls[p]=BT(x,mid);
        rs[p]=BT(mid+1,y);
    }
    return p;
}
void ADD(int p,int l,int r,int k,int d)
{
    if(lazy[p])PD(p);
    if(l==r){cnt[p]+=d;sum[p]=1ll*cnt[p]*l;return;}
    int mid=l+r>>1;
    if(k<=mid)ADD(ls[p],l,mid,k,d);
    else ADD(rs[p],mid+1,r,k,d);
    cnt[p]=cnt[ls[p]]+cnt[rs[p]];
    sum[p]=sum[ls[p]]+sum[rs[p]];
}
int GC(int p,int l,int r,int x,int y)
{
    if(lazy[p])return 0;
    if(x<=l&&y>=r)
    {
        int k=cnt[p];
        cnt[p]=sum[p]=0;
        lazy[p]=1;
        return k;
    }
    int mid=l+r>>1,cs=0;
    if(x<=mid&&y>=l)cs+=GC(ls[p],l,mid,x,y);
    if(x<=r&&y>mid)cs+=GC(rs[p],mid+1,r,x,y);
    cnt[p]=cnt[ls[p]]+cnt[rs[p]];
    sum[p]=sum[ls[p]]+sum[rs[p]];
    return cs;
}
void GA()
{
    int i,k;ll ans=0;
    BT(1,n);H[n+1]=H[n]+1;
    for(i=n-1;i>0;i--)
    {
        if(H[i+1]<H[i+2])k=GC(1,1,n,H[i+1]+1,H[i+2]);
        else k=0;
        if(H[i+1])ADD(1,1,n,H[i+1],k+1);
        ans+=sum[1];
    }
    printf("%lld",1ll*n*(1ll*n+1ll)/2ll*(1ll*n-1ll)-ans*2);
}
int main()
{
    scanf("%s",s);
    n=strlen(s);s[n]='a'-1;
    GSA(s,SA,n+1,300);
    GH(s,SA,n);GA();
}
AHOI2001是一种用于处理模式匹配和字符串搜索的经典算法,全称为"Another Happy Odyssey in 2001"。它通常应用于构建高效、空间优化的KMP(Knuth-Morris-Pratt)算法的一种改进版本。这种有限自动机常用于处理字符串搜索问题,尤其是在处理大量文本数据时。 关于题目代码的具体内容,这通常涉及到编程竞赛或算法实现题。通常,你需要编写一段程序,包括定义一个有限状态机(Finite Automaton),处理输入字符串和模式串,并根据AHOI2001算法来查找模式是否在原字符串中。关键部分会涉及如何创建前缀函数表、动态规划和自适应策略。 由于这不是一个直接的答案,下面是一个简化版的代码框架示例(假设用Python): ```python class AhoCorasickAutomaton: def __init__(self, patterns): self.prefix_func = self.build_prefix_function(patterns) def build_prefix_function(self, patterns): # 建立前缀函数表的计算过程... pass def search(self, text): index = 0 for pattern in patterns: while index < len(text) and index + len(pattern) <= len(text): if self.match(text[index:], pattern): return True index += self.prefix_func[pattern] return False def match(self, text, pattern): # 匹配函数,比较两个字符串是否相等... pass # 使用示例: patterns = ['AB', 'AC'] # 输入模式列表 automaton = AhoCorasickAutomaton(patterns) text = 'ABCABCD' # 待搜索的字符串 if automaton.search(text): print("Pattern found") else: print("Pattern not found")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值