快速幂算法基础

快速幂算法主要应用于求幂模的问题。
我们可以先定义一个问题:
如何求2^31的最后一位数?显而易见,结果当然是8.这个问题是具有特殊性的,可以用某些特殊解法来处理。但是作为我们对快速幂的学习例程来看,我们需要从特殊问题中寻找一般算法。
对于这个问题,最脑残的算法是:

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int main()
{
    int i,j,m=1,n,t;
    cin>>t>>n;
    while(--n>=0)m*=t; 
    cout<<m%10<<endl;
    return 0;
}

显见,这个算法对于大数据并不适用,可能造成内存溢出,因此我们做出:
while(--n>=0)m=(m*t)%10;
应用了离散数学中的一个定理:积的模等于模的积的模。
但是,时间复杂度并没有任何的改观。
为了解决时间复杂度问题,我们可以思考:对于n个a的积问题,是否可以转化为2*(n/2)个a的积的问题?答案是肯定的。再这样细分下去,不难想到,我们可以采用二分思想来解决这个问题。只是这里,我们并不把二分单独形成一个函数,我们仅仅采用while循环来解决二分算法的实现。(也称:二分幂)

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
int main()
{
    long long i,j,m=1,n,t,base;
    cin>>t>>n;
    t%=10;
    while(n)
    {
        if(n%2==1)
            m*=t;
        t=(t*t)%10;
        n/=2;
    }
    cout<<m%10<<endl;
    return 0;
}

经检验,这种算法可以在数据量为指数为10^16甚至更大时瞬间得出结果。
事实上,这也就是最基本的快速幂算法。
另则,在以上例程中我们使用的都是10作为基本模。可以单独导出一个变量Md来作为模数。这样可以实现任意模的快速幂。
对于更为复杂的问题,可能会用到快速幂与高精度的结合,以及快速幂的位运算实现方法,本文在此不作深入研究。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值