0x00映射定义
设X,Y是两个非空集合,如果存在一个法则f,对于任意元素xX,通过法则f后得到元素y,且yY,则称f是X到Y的映射。记做f:X --> Y。其中y称为x在映射f下的像,记做f(x),即y=f(x)。元素x称作元素y在映射f下的一个原像。集合X称为映射f的定义域,记做。X在映射f下组成的像的集合称作映射f的值域,记做或f(X)。=f(X)={f(x)|xX},。
例如:
在封建社会,有下面一群人女人们和男人们。那个时代有一种关系叫婚姻,重男轻女,男多女少,又是一夫多妻制,注定造就了一大批男性单身狗,女人都有对象。
女人们={翠花,潘金莲,李瓶儿,庞春梅,小红,林黛玉}
男人们={西门庆,贾宝玉,张三,李四,老王,麻子,二狗,傻蛋,二哈}
已知婚姻关系:翠花-李四,潘金莲-西门庆,李瓶儿-西门庆,庞春梅-西门庆,小红-老王,林黛玉-贾宝玉
可以看出女人们非空,男人们非空。那个时代存在婚姻法则,任意一个女人,通过婚姻法则对应到一个男人(对应多个男人的会被杀头)。所以婚姻法则是女人到男人映射。其中某男人称为某女人在婚姻映射下的夫君,某女人称作某男人在婚姻映射下的小妾。定义域是女人们,值域是{李四,西门庆,老王,贾宝玉}。男单身狗们是{张三,麻子,二狗,傻蛋,二哈}。
设f是X到Y的映射。任意yY都是某xX的像,则称f是X到Y上的满射。(表示封建社会每个男人至少有一个老婆)
设f是X到Y的映射。x1,x2是X中任意不同两个元素,若不存在f(x1)=f(x2),则称f是X到Y上的单射。(一夫一妻制,女的都有对象,存在男单身狗现象)
设f是X到Y的映射。f是X到Y的满射并且f是X到Y的单射,称f为一一映射或双射。(男女数量相同,男有妻,女有夫,不存在单身狗)
0x01 逆映射与复合映射
设f是X到Y的单射,定义域=X,值域。任意y,有唯一对应的x,可以定义一个从到映射g。这个映射g称为映射f的逆映射,记做。只有单映射才存在逆映射。
例如:X={1,2,3},Y={1,2,3,4,5,6},f(x)=x+1是X到Y的映射,={1,2,3},={2,3,4},这是一个单射是一个到的映射,并且=x-1。f:1和2对应,2和3对应,3和4对应 :2和1对应,3和2对应,4和3对应。
设g是X到P的映射,值域是g。f是Q到Y的映射,若gX,则可以根据g和f定义X到Y的映射:g(x)=p,f(p)=y 即 f[g(x)]=y。f[g(x)]是一个X到Y的映射,称这个映射为f和g的复合映射,记做。(x)=f[g(x)],x X。
例如:
食物和颜色的映射g:香蕉-黄色,苹果-红色,茄子-紫色,橙子-橙色,西瓜-绿色。
颜色和色调的映射f:红色-暖色,橙色-暖色,黄色-暖色,绿色-冷色,青色-冷色,蓝色-冷色,紫色-冷色。
g的值域{红色,橙色,黄色,绿色,紫色}是f的定义域{红色,橙色,黄色,绿色,青色,蓝色,紫色}的子集。
因此可以根据f,g复合成一个食物到色调的映射,f[g(食物)]。
0x02其它定义
映射又称为算子;从X到Y的映射又称为X上的泛函;从X到X的映射又称为X上的变换;从X(实数集或实数子集)到Y(实数集)的映射又称为X上的函数。