映射

0x00映射定义

设X,Y是两个非空集合,如果存在一个法则f,对于任意元素x\inX,通过法则f后得到元素y,且y\inY,则称f是X到Y的映射。记做f:X --> Y。其中y称为x在映射f下的,记做f(x),即y=f(x)。元素x称作元素y在映射f下的一个原像。集合X称为映射f的定义域,记做D_{f}。X在映射f下组成的像的集合称作映射f的值域,记做R_{f}或f(X)。R_{f}=f(X)={f(x)|x\inX},R_{f}\subset Y

例如:

在封建社会,有下面一群人女人们和男人们。那个时代有一种关系叫婚姻,重男轻女,男多女少,又是一夫多妻制,注定造就了一大批男性单身狗,女人都有对象。

女人们={翠花,潘金莲,李瓶儿,庞春梅,小红,林黛玉}

男人们={西门庆,贾宝玉,张三,李四,老王,麻子,二狗,傻蛋,二哈}

已知婚姻关系:翠花-李四,潘金莲-西门庆,李瓶儿-西门庆,庞春梅-西门庆,小红-老王,林黛玉-贾宝玉

可以看出女人们非空,男人们非空。那个时代存在婚姻法则,任意一个女人,通过婚姻法则对应到一个男人(对应多个男人的会被杀头)。所以婚姻法则是女人到男人映射。其中某男人称为某女人在婚姻映射下的夫君,某女人称作某男人在婚姻映射下的小妾。定义域是女人们,值域是{李四,西门庆,老王,贾宝玉}。男单身狗们是{张三,麻子,二狗,傻蛋,二哈}。

 

设f是X到Y的映射。任意y\inY都是某x\inX的像,则称f是X到Y上的满射。(表示封建社会每个男人至少有一个老婆)

设f是X到Y的映射。x1,x2是X中任意不同两个元素,若不存在f(x1)=f(x2),则称f是X到Y上的单射。(一夫一妻制,女的都有对象,存在男单身狗现象)

设f是X到Y的映射。f是X到Y的满射并且f是X到Y的单射,称f为一一映射双射。(男女数量相同,男有妻,女有夫,不存在单身狗)

 

0x01 逆映射与复合映射

设f是X到Y的单射,定义域D_{f}=X,值域R_{f}。任意y\inR_{f},有唯一对应的x\inD_{f},可以定义一个从R_{f}D_{f}映射g。这个映射g称为映射f的逆映射,记做f^{-1}。只有单映射才存在逆映射。

例如:X={1,2,3},Y={1,2,3,4,5,6},f(x)=x+1是X到Y的映射,D_{f}={1,2,3},R_{f}={2,3,4},这是一个单射f^{-1}是一个R_{f}D_{f}的映射,并且f^{-1}=x-1。f:1和2对应,2和3对应,3和4对应 f^{-1}:2和1对应,3和2对应,4和3对应。

 

设g是X到P的映射,值域是R_{f}g。f是Q到Y的映射,若R_{f}g\subsetX,则可以根据g和f定义X到Y的映射:g(x)=p,f(p)=y  即 f[g(x)]=y。f[g(x)]是一个X到Y的映射,称这个映射为f和g的复合映射,记做f\circ gf\circ g(x)=f[g(x)],x \inX。

例如:

食物和颜色的映射g:香蕉-黄色,苹果-红色,茄子-紫色,橙子-橙色,西瓜-绿色。

颜色和色调的映射f:红色-暖色,橙色-暖色,黄色-暖色,绿色-冷色,青色-冷色,蓝色-冷色,紫色-冷色。

g的值域{红色,橙色,黄色,绿色,紫色}是f的定义域{红色,橙色,黄色,绿色,青色,蓝色,紫色}的子集。

因此可以根据f,g复合成一个食物到色调的映射,f[g(食物)]。

 

 

0x02其它定义

映射又称为算子;从X到Y的映射又称为X上的泛函;从X到X的映射又称为X上的变换;从X(实数集或实数子集)到Y(实数集)的映射又称为X上的函数

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值