本文仅发布于csdn和知乎,在其余平台不作发表。
说明
不式一般性,本文对图形分量的指代局限于第一象限。
所谓的“面积”意思是在
N
N
N维一次型中超平面在第一象限的图形的
N
−
1
N-1
N−1维体积
曹在课题组中给出的不变量法属纯几何方法,不易说明这种证法在一般一次型的推广,本文执笔的能力水平只能理解到三维,所以在本文只是给出二维证明。三微情况的完整推导过程,详见《集合微扰法》的附录一。
定义
在
N
N
N维直角坐标系空间中:
所有面积相等的平面的分布边界构成漂洛界
D
D
D(其中每一个点不包含值为
0
0
0的坐标)。
一个点
P
P
P是 超平面
A
A
A的临点,如果这个
A
A
A的面积(下文简记为
(
A
)
(A)
(A))关于
P
P
P的微扰是不变量。
执笔:MonCera
理论指导:曹璟鑫,陶哲轩
简单情形
在二维情况的两个基本问题
知定点坐标,求过墙角定点的最短直线段?
长度为定值的墙角滑杆,求轨迹?
过原点引出一条直线,注意到这个和直线的交点的各个坐标和对应长度是正相关的。
答案就不说了,网上讲这个问题的文章一大把。这里只是讲讲方法。
二维情况的微分几何证明
微调倾斜角,两式作差得到的交点就是临点。
二维情况的不变量法证明
微调滑杆,两滑杆作差为0得到决定临点分布的比例系数的方程。
二维情况的旋心法证明
相当于是认为杆在绕一点旋转,把这个旋心分析出来问题就解决了。
一般情况
在N维的两个基本问题
知定点确定的超平面系
[
A
]
[A]
[A]求
(
A
)
(A)
(A)的最小值?
面积
(
A
)
(A)
(A)为定值,求
D
D
D的方程?
用拉格朗日乘数法得到临点
临点
P
(
x
1
,
x
2
,
.
.
.
,
x
N
)
P(x_1,x_2,...,x_N)
P(x1,x2,...,xN)与
A
A
A一一对应,临点的位置与
[
A
]
[A]
[A]的分布区域一一对应。
记
λ
=
∑
1
N
a
−
2
,
μ
=
N
2
∏
1
N
a
2
\lambda=\sum_{1}^{N}a^{-2}, \mu=N^2\prod_{1}^{N}a^{2}
λ=∑1Na−2,μ=N2∏1Na2
以截距为变量,构造约束方程(临点)和目标变量(面积),尝试得到临点(A的截距的值为不变量时的点)。
g = A = ∑ 1 N x a − 1 = 0 , h = ( ( A ) ) 2 = λ μ g=A= \sum_1^N\frac{x}{a}-1=0,h=((A))^2=\lambda\mu g=A=∑1Nax−1=0,h=((A))2=λμ
核心工作是求导。
h
a
i
=
−
s
g
a
i
h_{a_i}= -sg_{a_i}
hai=−sgai
λ
μ
a
i
+
λ
a
i
μ
=
s
x
a
i
1
a
i
2
\lambda\mu_{a_i}+\lambda_{a_i}\mu= sx_{a_i}\frac{1}{a_i^2}
λμai+λaiμ=sxaiai21
λ
μ
a
i
−
1
a
i
3
μ
=
s
x
a
i
1
a
i
2
\lambda\frac{\mu}{a_i}-\frac{1}{a_i^3}\mu= sx_{a_i}\frac{1}{a_i^2}
λaiμ−ai31μ=sxaiai21
μ
(
λ
−
1
a
i
2
)
=
s
x
i
a
i
\mu(\lambda\ -\frac{1}{a_i^2})= s\frac{x_i}{a_i}
μ(λ −ai21)=saixi
注意到与g相似的结构 x 1 a 1 \frac{x^1}{a^1} a1x1,将(1)的左右边相加N次得到s:
s
=
h
(
N
−
1
)
s=h(N-1)
s=h(N−1)
于是得到
D
D
D:
x
i
=
a
i
μ
(
λ
−
1
a
i
2
)
(
(
A
)
)
2
x_i = \frac{a_i\mu(\lambda-\frac{1}{a_i^2})}{((A))^2}
xi=((A))2aiμ(λ−ai21)