思路:从点1出发,找到距离点一最远的点,在从找到的点着距离此点最远的点,先后找到的两个点就是距离最远的两个点,即进行两次深搜。
问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出说明
大臣J从城市4到城市5要花费135的路费。
根据资源限制尽可能考虑支持更大的数据规模。
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int a[5001][5001];
bool b[5001];
int ed=0;
int n;
int sum=0;
int Max=0;
int w[5001];
void dfs(int u,int k){
w[k]=u;
b[u]=true;
for(int i=1;i<=n;i++){
if(a[u][i]!=0&&!b[i]){
dfs(i,k+1);
b[i]=false;
}
}
sum=0;
for(int i=1;i<k&&k!=1;i++){
sum+=a[w[i]][w[i+1]];
}
if(sum>Max){
Max=sum;
ed=w[k];
}
}
int main(){
memset(a,0,sizeof(a));
memset(b,false,sizeof(b));
memset(w,0,sizeof(w));
cin>>n;
int p,q,k;
for(int i=0;i<n-1;i++){
cin>>p>>q>>k;
a[p][q]=a[q][p]=k;
}
dfs(1,1);
// cout<<end;
dfs(ed,1);
/// cout<<" "<<end<<" ";
// cout<<Max<<" ";
sum=0;
for(int i=1;i<=Max;i++ ){
sum+=10+i;
}
cout<<sum<<endl;
return 0;
}