题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1211
Description
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。
Input
第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。
Output
输出满足条件的树有多少棵。
这个题主要要知道prufer序列,也就是将树序列化,一棵树和一个prufer序列一一对应。
将树转化成Prufer数列的方法
一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,…,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。
将Prufer数列转化成树的方法
设{a1,a2,…an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1…n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。
具体例子就不分析了。
所以根据题目中给的条件,所有满足题目的树的个数就是
A
n
s
=
Π
i
n
(
n
−
2
−
∑
j
=
1
i
−
1
d
j
−
1
d
i
−
1
)
Ans=\Pi_i^n\binom{n-2-\sum_{j=1}^{i-1}d_{j-1}}{d_{i-1}}
Ans=Πin(di−1n−2−∑j=1i−1dj−1)
化简之后可得
A
n
s
=
(
n
−
2
)
!
Π
i
n
(
d
i
−
1
)
Ans=\frac{(n-2)!}{\Pi_i^n(d_i-1)}
Ans=Πin(di−1)(n−2)!
最后注意中间可能会爆long long,所以要用质因数分解,以及判断其他一些不合法的情况。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int N=155;
typedef long long ll;
int d[N],cnt[N];
ll power(ll a,ll n){
ll res=1;
for(;n;n>>=1,a*=a)
if(n&1)
res=res*a;
return res;
}
void split(int x,int flag){
for(int i=2;i*i<=x;i++){
if(x%i==0){
while(x%i==0){
x/=i;
cnt[i]+=flag;
}
}
}
if(x!=1)
cnt[x]+=flag;
}
int main(){
int n,sum=0;
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&d[i]);
}
for(int i=0;i<n;i++){
sum+=d[i];
if(n>=2&&!d[i]){
printf("0\n");
return 0;
}
}
if(sum!=n*2-2){
printf("0\n");
return 0;
}
ll ans=1;
for(int i=2;i<=n-2;i++)
split(i,1);
for(int i=0;i<n;i++){
for(int j=2;j<=d[i]-2;j++){
split(j,-1);
}
}
for(int i=2;i<=n;i++)
ans=1ll*ans*power(i,cnt[i]);
printf("%lld\n",ans);
return 0;
}