bzoj 1211 [HNOI2004]树的计数 prufer序列

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1211

Description
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。

Input
第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。

Output
输出满足条件的树有多少棵。

这个题主要要知道prufer序列,也就是将树序列化,一棵树和一个prufer序列一一对应。
将树转化成Prufer数列的方法
一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点。对于一棵顶点已经经过编号的树T,顶点的编号为{1,2,…,n},在第i步时,移去所有叶子节点(度为1的顶点)中标号最小的顶点和相连的边,并把与它相邻的点的编号加入Prufer序列中,重复以上步骤直到原图仅剩2个顶点。
将Prufer数列转化成树的方法
设{a1,a2,…an-2}为一棵有n个节点的树的Prufer序列,另建一个集合G含有元素{1…n},找出集合中最小的未在Prufer序列中出现过的数,将该点与Prufer序列中首项连一条边,并将该点和Prufer序列首项删除,重复操作n-2次,将集合中剩余的两个点之间连边即可。

具体例子就不分析了。
所以根据题目中给的条件,所有满足题目的树的个数就是
A n s = Π i n ( n − 2 − ∑ j = 1 i − 1 d j − 1 d i − 1 ) Ans=\Pi_i^n\binom{n-2-\sum_{j=1}^{i-1}d_{j-1}}{d_{i-1}} Ans=Πin(di1n2j=1i1dj1)
化简之后可得
A n s = ( n − 2 ) ! Π i n ( d i − 1 ) Ans=\frac{(n-2)!}{\Pi_i^n(d_i-1)} Ans=Πin(di1)(n2)!

最后注意中间可能会爆long long,所以要用质因数分解,以及判断其他一些不合法的情况。

AC代码

#include<bits/stdc++.h>
using namespace std;
const int N=155;
typedef long long  ll;
int d[N],cnt[N];
ll power(ll a,ll n){
    ll res=1;
    for(;n;n>>=1,a*=a)
        if(n&1)
            res=res*a;
    return res;
}
void split(int x,int flag){
    for(int i=2;i*i<=x;i++){
        if(x%i==0){
            while(x%i==0){
                x/=i;
                cnt[i]+=flag;
            }
        }
    }
    if(x!=1)
        cnt[x]+=flag;
}
int main(){
    int n,sum=0;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%d",&d[i]);
    }
    for(int i=0;i<n;i++){
        sum+=d[i];
        if(n>=2&&!d[i]){
            printf("0\n");
            return 0;
        }
    }
    if(sum!=n*2-2){
        printf("0\n");
        return 0;
    }
    ll ans=1;
    for(int i=2;i<=n-2;i++)
        split(i,1);
    for(int i=0;i<n;i++){
        for(int j=2;j<=d[i]-2;j++){
            split(j,-1);
        }
    }
    for(int i=2;i<=n;i++)
        ans=1ll*ans*power(i,cnt[i]);
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值