python-矩阵的对角化-3Blue1Brown-10特征向量与特征值-思考题代码

这篇博客探讨了线性代数中特征向量和特征值的概念,以及它们在矩阵多次幂运算中的作用。通过一个具体的例子,展示了如何使用Python进行矩阵对角化,从而简化计算A的n次幂的过程。博主使用了3Blue1Brown线性代数课程的课后问题,并通过代码实现,说明了特征向量和对角化在高效计算中的优势。
摘要由CSDN通过智能技术生成

3Blue1Brown 线性代数的本质第10节特征向量与特征值的课后题,对比矩阵的n次幂计算,与对角化的关系。

课程地址:【官方双语/合集】线性代数的本质 - 系列合集_哔哩哔哩_bilibili

经过计算,发现A的n次方符合斐波那契数列规律。这个计算虽然不是很复杂,但是n次幂就需要经过n-1次计算。而经过对角化后,也就是第二题,根据特征向量,转化A矩阵到以特征向量为基向量的坐标系,得到以特征值构成的对角化矩阵。这个求n次幂只需要一次计算即可求得。最后只需再把计算结果转回标准坐标系即可得到与第一题相同的结果。

python计算代码如下:

import numpy as np

def main():
	# test = np.array([[2, 0], [0, 3]])
	# print(mypow(test, 3))
	np.set_printoptions(suppress=True, linewidth=300)	#设置矩阵输出不用科学计数法,方便观看

	A = np.array([[0, 1], [1, 1]])	#矩阵,线性变换

	V = np.array([[2, 2], [1+np.sqrt(5), 1-np.sqrt(5)]])
	V_reverse = np.linalg.inv(V)	# T的逆矩阵

	# A 矩阵在对角化后的对角矩阵,也就是说A矩阵对应的,在以V为基向量的坐标系中的矩阵,记为B
	B = np.dot(V_reverse, np.dot(A, V))  

	n = 10	#幂数

	#第一题,A的n次幂,其实计算后发现是斐波那契数列的规律
	print("\n A power 10 is:\n", mypow(A, n))	

	#第二题,先把A对应的对角阵B 求n次幂
	print("\n A translate in diagonal matrix, another coordinate system B:\n", B)
	A_B = mypow(B, n)
	print("\n B power 10 is:\n", A_B)
	#然后再将其转换回A的坐标系,发现与A的n次幂相同
	A_B_A = np.dot(V, np.dot(A_B, V_reverse))
	print("\n After B powered 10, translate back into original coordinate system:\n", A_B_A)


def mypow(a, n):
	#将矩阵a,幂乘n次并返回结果
	if n<1:
		return 
	c = a
	if n==1:
		return c
	for i in range(n-1):
		c = np.dot(a, c)
	return c

if __name__ == '__main__':
	main()

运行结果:

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值