自助数据分析是一个迭代分析过程,在一轮又一轮的分析过程中后得到对数据的洞察,不断产生有价值的派生数据,最终形成分析结果,并落实为企业的管理行动。
自助数据分析是一个迭代分析过程,在一轮又一轮的分析过程中后得到对数据的洞察,不断产生有价值的派生数据,最终形成分析结果,并落实为企业的管理行动。
分析思路是最重要的,智分析插件和Excel技能是思路落地的好工具。通过智分析插件能够高效的把数据取到Excel中,同时使用Excel技能包括Excel公式、图形、数据透视表、Power Query等即可做出自助数据分析。
分析案例
A公司是一家软件公司,2019年初要分析过去3年的销售数据,做出本年度的战略规划。
销售数据如下,有6个字段。
分析思路
可以从以下4个角度分析数据。
首先利用智分析插件,把数据从数据库取到Excel中,后面新增加的派生字段的公式会自动按行扩展。
行业分析
利用数据透视表,得到过去3年各行业的合同数量。可以看出教育客户数量少而且萎缩严重,没有必要单列了。所以将教育行业合并到政府行业。
增加派生字段,合并教育行业到政府行业。
合并后的透视数据表。
客单价并没有什么变化。
增长分析
用透视表汇总3年的合同金额,可见2018年销售额大涨。增长的原因是什么?新客户、老客户、客单价情况如何?
增加派生字段,看老客户复购情况。
可以看出,增长主要来源老客户,新客户的增长不大。
客单价并没有什么变化。
复购分析
利用数据透视表,首次购买年份作为行,合同年份作为列,2016年获得27个新客户的合同,次年老客户贡献了5个合同,再次年贡献了9个合同;2017年获得31个新客户的合同,次年老客户贡献了13个合同。右图为复购百分比。
如果按照金额计算,老客户的贡献度更高。整体看客户的复购率很不错。
客户价值分析
RFM是常规的客户价值分析模型,通过近度(Recency)、频度(Frequency)、值度(Monetary)划分客户群,
找出公司的经营重点。
用透视表汇总客单价的区间,并主观划分5个价值类别。
增加派生字段,得到R分层、F分层、M分层。
利用数据透视图,可以看出流失客户的价值不大,忠诚客户(3次购买以上)贡献最大。
数据分析的全过程
所有的原始字段和派生字段,当智分析Excel插件刷新数据时,派生字段也会同时更新。
分析结论
通过上面的数据探索,可以得出以下结论:
1.公司经营健康,销售额快速增长、复购率高。
2.新客户增长缓慢,有隐忧。
3.要大力开拓新客户,突破方向是企业行业。
4.继续做好老客户的复购,
管理行动
在2019年度,公司的经营策略可以进行如下调整。
1.撤销教育事业部,相关人员转到政府事业部。
2.扩充企业事业部编制,并大幅提高2019年度销售目标。
3.管理层研讨复购企业的特征,优化老客户的销售策略。
分析思路是最重要的,智分析插件和Excel技能是思路落地的好工具。通过智分析插件能够高效的把数据取到Excel中,同时使用Excel技能包括Excel公式、图形、数据透视表、Power Query等即可做出自助数据分析。
image.png
分析案例
A公司是一家软件公司,2019年初要分析过去3年的销售数据,做出本年度的战略规划。
销售数据如下,有6个字段。
image.png
分析思路
可以从以下4个角度分析数据。
image.png
首先利用智分析插件,把数据从数据库取到Excel中,后面新增加的派生字段的公式会自动按行扩展。
image.png
行业分析
利用数据透视表,得到过去3年各行业的合同数量。可以看出教育客户数量少而且萎缩严重,没有必要单列了。所以将教育行业合并到政府行业。
image.png
增加派生字段,合并教育行业到政府行业。
image.png
合并后的透视数据表。
image.png
客单价并没有什么变化。
image.png
增长分析
用透视表汇总3年的合同金额,可见2018年销售额大涨。增长的原因是什么?新客户、老客户、客单价情况如何?
image.png
增加派生字段,看老客户复购情况。
image.png
可以看出,增长主要来源老客户,新客户的增长不大。
image.png
客单价并没有什么变化。
image.png
复购分析
利用数据透视表,首次购买年份作为行,合同年份作为列,2016年获得27个新客户的合同,次年老客户贡献了5个合同,再次年贡献了9个合同;2017年获得31个新客户的合同,次年老客户贡献了13个合同。右图为复购百分比。
image.png
如果按照金额计算,老客户的贡献度更高。整体看客户的复购率很不错。
image.png
客户价值分析
RFM是常规的客户价值分析模型,通过近度(Recency)、频度(Frequency)、值度(Monetary)划分客户群,
找出公司的经营重点。
用透视表汇总客单价的区间,并主观划分5个价值类别。
image.png
增加派生字段,得到R分层、F分层、M分层。
image.png
利用数据透视图,可以看出流失客户的价值不大,忠诚客户(3次购买以上)贡献最大。
image.png
数据分析的全过程
image.png
所有的原始字段和派生字段,当智分析Excel插件刷新数据时,派生字段也会同时更新。
image.png
分析结论
通过上面的数据探索,可以得出以下结论:
1.公司经营健康,销售额快速增长、复购率高。
2.新客户增长缓慢,有隐忧。
3.要大力开拓新客户,突破方向是企业行业。
4.继续做好老客户的复购,
管理行动
在2019年度,公司的经营策略可以进行如下调整。
1.撤销教育事业部,相关人员转到政府事业部。
2.扩充企业事业部编制,并大幅提高2019年度销售目标。
3.管理层研讨复购企业的特征,优化老客户的销售策略。