torch.nn.rnn.pack_padded_sequence及pad_packed_sequence的理解
pytorch官网解释理解
torch.nn.utils.rnn.pad_packed_sequence(sequence,
batch_first=False, padding_value=0.0, total_length=None)
Pads a packed batch of variable length sequences.
It is an inverse operation to pack_padded_sequence().
The returned Tensor’s data will be of size T x B x *, where T is the length of the longest sequence and B is the batch size. If batch_first is True, the data will be transposed into B x T x * format.
Example
>>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
>>> seq = torch.tensor([[1,2,0], [3,0,0], [4,5,6]]) # shape: [batch_size, seq_len]
>>> lens = [2, 1, 3] # 每个batch的非零个数 eg:[1,2,0]非0个数为2
# batch_first 表示seq的第一维是batch_size
>>> packed = pack_padded_sequence(seq, lens, batch_first=True, enforce_sorted=False)
>>> packed
PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]),
sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0]))
>>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True)
>>> seq_unpacked
tensor([[1, 2, 0],
[3, 0, 0],
[4, 5, 6]])
>>> lens_unpacked
tensor([2, 1, 3])
Parameters
sequence (PackedSequence) – batch to pad
batch_first (bool, optional) – if True, the output will be in B x T x * format.
padding_value (float, optional) – values for padded elements.
total_length (int, optional) – if not None, the output will be padded to have length total_length. This method will throw ValueError if total_length is less than the max sequence length in sequence.
Returns
Tuple of Tensor containing the padded sequence, and a Tensor containing the list of lengths of each sequence in the batch. Batch elements will be re-ordered as they were ordered originally when the batch was passed to pack_padded_sequence or pack_sequence.



某博主解释
https://www.cnblogs.com/luckyplj/p/13376818.html
768

被折叠的 条评论
为什么被折叠?



