堆排序

6 篇文章 0 订阅
package com.algorithm.sort;

import java.util.Scanner;

/**
 * 堆排序
 * 算法思路:
 * 一维数组除了能表示线性结构外,还能表示完全二叉树
 *  选择排序的思想是,固定位置比较n-1次,获得数字,固定下一个位置,比较n-2次。。。
 *  但是这样,后面的比较有重新比较,有的数字是比较过的。
 *  而堆排序正是利用树形结构,对比较过的进行保存。省去了没必要的重复比较。
 * 最大堆:任意的f(i)>f(2*i+1),f(2*i+2)
 * 最小堆:任意的f(i)<f(2*i=1),f(2*i+2)
 * 本代码使用最大堆,即采用从小到大排序
 * 就是第一次初始化堆,将最大值放到根结点,然后从树的最后一个倒着处理(将根结点即剩余数的最大值放到最后一个位置即倒着排序)
 * 1.初始化堆
 *   1.1从最后一个父节点i起,f(i),f(2*i+1),f(2*i+2)取最大的与f(i)交换,(即调为最大堆)
 *   1.2 i--
 *   1.3调整过后,可能有的子节点与父节点交换以后,该子节点本身作为父节点,可能会打乱曾经调整过的
 *      ,但只是影响左子树或者右子树,我们只需要循环对该子树进行调整最大堆就行了, 因为该子树的兄弟子树
 *      是调整过的,不必调整.
 *  2.通过初始化堆,可以根节点就是剩下的k个数字(初始剩下的有n个数字,排一次序,剩下的数字少一个,即k--)中最大的数字,
 *    而k之后的数字是排好序的,只需要将根节点跟k位置的数字交换,那么f(n),f(n-1)..f(k)就是倒数最大的数字的有序序列。
 *    经过交换数字,根节点的最大堆性质又被打乱,那么按照1.3的步骤继续调整堆。
 *    循环步骤2,直到k=1的时候,就排好序了
 * @author mooner
 *
 */
public class HeapSort {
	public static void main(String[] args){
		while(true){
			
			System.out.println("\n请输入数字个输入");
			int n = new Scanner(System.in).nextInt();
			int[] num = new int[n];
			for(int i = 0; i < num.length;i++){
				num[i] = new Scanner(System.in).nextInt();
			}
			System.out.println("堆排序前:");
			for(int i=0;i<num.length;i++){
				System.out.print(num[i]+"\t");
			}
			System.out.println();
			System.out.println("堆排序后:");
			sort(num);
			for(int i=0;i<num.length;i++){
				System.out.print(num[i]+"\t");
			}
		}
	}
	/**
	 * 堆排序
	 * @param arr  待排序的数组
	 */
	public static void sort(int[] arr){
		//初始化堆。从最后一个父节点开始,倒着调整堆
		for(int i = arr.length/2-1; i>=0 ; i--){
			adjust(arr,i,arr.length-1);
		}
		
		for(int j = arr.length - 1; j >= 1 ; j--){
			int tmp = arr[0];
			arr[0] = arr[j];
			arr[j] = tmp;
			adjust(arr,0,j-1);
		}
		
	}
	/**
	 *  调整堆
	 *  值调整当前父节点的位置和父节点的子树,不负责调整父节点的兄弟节点或者父节点的父节点
	 * @param arr 调整的数组
	 * @param parent  父节点
	 * @param last 最后一个叶子节点的位置
	 */
	public static void adjust(int[] arr,int parent,int last){
		//定义较大的节点的位置,默认为左孩子节点
		int maxIndex = 2*parent+1;
		while(maxIndex <= last){  //节点在调整范围  
			if(maxIndex < last){  //存在右孩子节点 
				//比较左右孩子
				if(arr[maxIndex] < arr[maxIndex+1]){
					maxIndex++;
				}
			}
			//将最大的孩子节点跟父节点比较,如果父节点小,则交换
			if(arr[parent] < arr[maxIndex]){
				int tmp = arr[parent];
				arr[parent] = arr[maxIndex];
				arr[maxIndex] = tmp;
				parent = maxIndex; //交换后可能造成孩子节点不满足最大堆,那么继续往下迭代
				maxIndex = parent * 2 +1;
			}else{
				break;
			}
		}
	}
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值