实验项目:哈夫曼编码与译码方法
哈夫曼编码是一种以哈夫曼树(最优二叉树,带权路径长度最小的二叉树)为基础的基于统计学的变长编码方式。其基本思想是:将使用次数多的代码转换成长度较短的编码,而使用次数少的采用较长的编码,并且保持编码的唯一可解性。在计算机信息处理中,经常应用于数据压缩。是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。本实验要求利用贪心算法实现一个完整的哈夫曼编码与译码系统。
实验内容和实验要求:
- 从文件中读入任意一篇英文文本文件,分别统计英文文本文件中各字符(包括标点符号和空格)的使用频率;
- 根据已统计的字符使用频率构造哈夫曼编码树,并给出每个字符的哈夫曼编码(字符集的哈夫曼编码表);
- 将文本文件利用哈夫曼树进行编码,存储成压缩文件(哈夫曼编码文件);
- 计算哈夫曼编码文件的压缩率;
- 将哈夫曼编码文件译码为文本文件,并与原文件进行比较。
以下可以不做,供思考,做了可以适当加分 - 能否利用堆结构,优化的哈夫曼编码算法。
- 上述 1-5 的编码和译码是基于字符的压缩,考虑基于单词的压缩,完成上述工作,讨论并比较压缩效果。
- 上述 1-5 的编码是二进制的编码,可以采用 K 叉的哈夫曼树完成上述工作,实现“K 进制”的编码和译码,并与二进制的编码和译码进行比较。
//统计链表定义
typedef struct LNode{
char data;
int x,w; //x:字符出现的次数,w:节点在三叉链表中的序号
struct LNode *next;
}LNode,*linklist;
//定义哈夫曼存储结构--静态三叉链表
typedef struct{
char data;
int x;
int lchild;
int rchild;
int parent;
}HTNODE;
InitHT(length,head,r); //初始化
for(i=length;i<2*length-1;i++)
{
//建立哈夫曼树
p1=head->next;
p2=p1->next;
r[p1->w].parent=r[p2->w].parent=i;
r[i].lchild=p1->w;
r[i].rchild=p2->w;
r[i].x=r[p1->w].x+r[p2->w].x;
//修改统计链表
head->next=p2->next;//删除两个权值最小的节点
p2->x=r[i].x;
p2->w=i;
//将新生成的节点插入到对应位置
free(p1);
p1=head;
while(p1->next!=NULL)
{
if(p1->next->x>=p2->x) break;
p1=p1->next;
}
p2->next=p1->next;
p1->next=p2;
}
r[2*length-2].parent=-1;
}
本算法利用归并排序,将字符按出现次数从小向大排序并存入LNode链表,每次从链表头选择并删除两个结点,链表中储存各哈夫曼子树的根在静态三叉链表中的位置,在静态三叉链表中合并成新的哈夫曼子树,并将新子树根的信息存入LNode结点,插入到链表的对应位置。如此循环完成哈夫曼树的建立。
//归并排序
void Merge_Sort(LNode r[],LNode r1[],int s,int t)
{
if(s==t)
return;
else{
int m=(s+t)/2;
Merge_Sort(r,r1,s,m);
Merge_Sort(r,r1,m+1,t);
Merge(r,r1,s,m,t);
}
}
void Merge(LNode r[],LNode r1[],int s,int m,int t)
{
int i=s,j=m+1,k=s;
while(i<=m&&j<=t)
{
if(r[i].x>r[j].x)
{
r1[k].data=r[j].data;
r1[k].x=r[j].x;
++k;++j;
}
else
{
r1[k].data=r[i].data;
r1[k].x=r[i].x;
++k;++i;
}
}
while(i<=m)
{
r1[k].data=r[i]