2020牛客多校训练营(第九、十场)

第九场

A.Groundhog-and-2-Power-Representation

标签:高精度、递归读入

递归处理括号内的输入,cnt[i]表示 2 i 2^i 2i的个数,由答案范围可知i小于1000,也就是只需要统计出cnt数组之后再做高精度就可以得到答案。

#include<bits/stdc++.h>
using namespace std;

const int N=2e4+5;

int p;

char s[N];

int cnt[N],pw[20],ans[N],top;

void init() {
	p=0;
	pw[0]=1;
	for (int i=1;i<20;i++) pw[i]=pw[i-1]*2;
}

int dfs() {
	p++;
	int res=0,tmp=0;
	while(s[p]!=')') {
		if (s[p]=='2') {
			tmp=1;
			p++;
			if (s[p]=='(') tmp=dfs();
			else p--;
			res+=pw[tmp];
		}
		p++;
	}
	return res;
}

void mul(int v) {
	for (int i=top;i>=0;i--) {
		ans[i]=ans[i]*v;
	}
	for (int i=0;i<=top-1;i++) {
		ans[i+1]+=ans[i]/10;
		ans[i]%=10;
	}
	while(ans[top]>=10) {
		ans[top+1]+=ans[top]/10;
		ans[top]%=10;
		top++;
	}
}

void add(int v) {
	ans[0]+=v;
	int t=0;
	while(ans[t]>=10) {
		ans[t+1]=ans[t]/10;
		ans[t]%=10;
	}
	top=max(top,t);
}

int main() {
	scanf("%s",s);
	init();
	int len=strlen(s);
	while (p<len) {
		if (s[p]=='2') {
			int res=1;
			p++;
			if (s[p]=='(') res=dfs();
			else p--;
			cnt[res]++;
		}
		p++;
	}
	for (int i=2000;i>=0;i--) {
		mul(2);
		if (cnt[i]) add(cnt[i]);
	}
	for (int i=top;i>=0;i--) printf("%d",ans[i]);
	return 0;
}

F.Groundhog-Looking-Dowdy

标签:尺取问题

把所有点排序之后放在一根数轴上,不断调整区间的左右端点,保证区间内包含了m种不同的日期,取长度最短的区间即为答案。

#include<bits/stdc++.h>
using namespace std;

const int N=2e6+5;

struct Node {
	int v,ty;
}a[N];

int n,m,tot,ans;

int ct[N];

int main() {
	cin>>n>>m;
	for (int i=1;i<=n;i++) {
		int k;
		scanf("%d",&k);
		for (int j=1;j<=k;j++) {
			int x;
			scanf("%d",&x);
			a[++tot].v=x;
			a[tot].ty=i;
		}
	}
	sort(a+1,a+1+tot,[&](Node a,Node b){return a.v<b.v;});
	int l=1,r=0,cnt=0;
	ans=INT_MAX;
	while(r!=tot){
		while(cnt<m && r!=tot) {
			r++;
			ct[a[r].ty]++;
			if (ct[a[r].ty]==1) {
				cnt++;
			}
		}
		while(cnt==m) {
			ans=min(ans,a[r].v-a[l].v);
			ct[a[l].ty]--;
			if (ct[a[l].ty]==0) {
				cnt--;
			}
			l++;
		}
	}
	printf("%d\n",ans);
}

K.The-Flee-Plan-of-Groundhog

标签:模拟

Groundhog一定先走到orange所在的那条链上的某一点,然后往与orange不同的方向走到尽可能深的点。那么枚举orange所在的链上的每一个点,并判断Groundhog是走到最深处之前就被追上还是在最深处等待,再计算出答案,取最大值。

#include<bits/stdc++.h>
using namespace std;

const int N=2e6+5;

vector<int>G[N];

vector<int>vc;

bool online[N];

int n,t,dep[N],mxdep[N];

int ans;

void dfs(int x,int f) {
	if (x==n) {
		online[x]=1;
		mxdep[x]=1;
		return;
	}
	if (G[x].size()==1 && f!=-1) {
		mxdep[x]=dep[x];
		return;
	}
	for (auto to:G[x]) {
		if (to==f) continue;
		dep[to]=dep[x]+1;
		dfs(to,x);
		if (online[to]==1) {
			vc.push_back(to);
			online[x]=1;
		}
		if (!online[to]) mxdep[x]=max(mxdep[x],mxdep[to]);
	}
}

int main() {
	cin>>n>>t;
	for (int i=1;i<=n-1;i++) {
		int u,v;
		scanf("%d%d",&u,&v);
		G[u].push_back(v);
		G[v].push_back(u);
	}
	for (int i=1;i<=n;i++) mxdep[i]=1;
	dep[1]=1;
	dfs(1,-1);
	vc.push_back(1);
	int nd=t+1;
	for (auto x:vc) {
		if (dep[x]<=nd) {
			int gap=dep[n]-nd;
			int len=nd-dep[x]+(mxdep[x]-dep[x]);
			ans=max(ans,min((gap+len+1)/2,gap));
		}
		if (dep[x]>nd) {
			int gap=dep[n]-nd-(dep[x]-nd)*3;
			if (!gap) continue;
			int len=mxdep[x]-dep[x];
			ans=max(ans,min((gap+len+1)/2,gap)+dep[x]-nd);
		}
	}
	printf("%d\n",ans);
}

E.Groundhog-Chasing-Death

标签:质因数分解、暴力

首先对x和y质因数分解之后发现,对于每个质因数都是一个独立的问题。
假设当前质因数为p,x能拆成e个p,y能拆成f个p,也就是 x = p e ⋅ ⋅ ⋅ , y = p f ⋅ ⋅ ⋅ x=p^e···,y=p^f··· x=pe,y=pf那么 g c d ( ( p e ) i , ( p f ) j ) gcd((p^e)^i,(p^f)^j) gcd((pe)i,(pf)j)只取决于 e i 和 f j ei和fj eifj的大小关系。考虑每一个i的取值(从a到b),分别判断j能满足ei<=fj的取值范围,此时gcd的取值为 p e i p^{ei} pei同样,考虑每一个j的取值(从c到d),判断i满足ei>fj的取值范围,此时gcd的取值为 p f j p^{fj} pfj
对每个质因数都这样进行判断,根据数据范围,质因数个数不超过10个

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
using namespace std;

const int N=1e5+5,MOD=998244353;

int a,b,c,d,x,y,n,ans;

int vis[N],pr[N],countPrime;
void getPrime() {
    for (int i=2;i<N;i++) {
        if (!vis[i]) pr[++countPrime]=i;
        for (int j=1;j<=countPrime;j++) {
            if (i*pr[j]>=N) break;
            vis[i*pr[j]]=1;
            if (i%pr[j]==0) break;
        }
    }
}
int bin(int b,uLL p) {
	int res=1;
	for (;p;p>>=1,b=(1ll*b*b)%MOD){
		if (p&1) res=(1ll*res*b)%MOD;
	}
	return res;
}
int ask(int a,int b,int c,int d) {
	if (a>b) return 0;
	if (b<c) return 0;
	if (a>d) return 0;
	if (a<c) a=c;
	if (b>d) b=d;
	return b-a+1;
}
int main() {
	cin>>a>>b>>c>>d>>x>>y;
	getPrime();
	ans=1;
	for (int i=1;i<=countPrime;i++) {
		if (x%pr[i]==0 && y%pr[i]==0) {
			int cntx=0,cnty=0,now=pr[i];
			int tmp,sum;
			uLL cnt;
			while(x%now==0) {
				x/=now;
				cntx++;
			}
			while(y%now==0) {
				y/=now;
				cnty++;
			}
			cnt=0;tmp=bin(now,cntx);
			for (int j=a;j<=b;j++) {
				int tot=j*cntx;
				int bod=tot/cnty+1;
				if (tot%cnty==0) bod--;
				int ak=ask(bod,d,c,d);
   				if (ak) cnt+=1ll*j*ak;

			}
			ans=1ll*ans*bin(tmp,cnt)%MOD;
			cnt=0;tmp=bin(now,cnty);
			for (int j=c;j<=d;j++) {
				int tot=j*cnty;
				int bod=tot/cntx+1;
				int ak=ask(bod,b,a,b);
				if (ak) cnt+=1ll*j*ak;

			}
			ans=1ll*ans*bin(tmp,cnt)%MOD;
		}
		while(x%pr[i]==0) {
			x/=pr[i];
		}
		while(y%pr[i]==0) {
			y/=pr[i];
		}
	}
	if (x!=1 && y!=1 && x==y) {
		int cntx=0,cnty=0,now=x;
		int tmp,sum;
		uLL cnt;
		while(x%now==0) {
			x/=now;
			cntx++;
		}
		while(y%now==0) {
			y/=now;
			cnty++;
		}
		if (cntx!=0 && cnty!=0){
			cnt=0;tmp=bin(now,cntx);
			for (int j=a;j<=b;j++) {
				int tot=j*cntx;
				int bod=tot/cnty+1;
				if (tot%cnty==0) bod--;
				int ak=ask(bod,d,c,d);
				if (ak) cnt+=1ll*j*ak;
			}
			ans=1ll*ans*bin(tmp,cnt)%MOD;
			cnt=0;tmp=bin(now,cnty);
			for (int j=c;j<=d;j++) {
				int tot=j*cnty;
				int bod=tot/cntx+1;
				int ak=ask(bod,b,a,b);
				if (ak) cnt+=1ll*j*ak;
			}
			ans=1ll*ans*bin(tmp,cnt)%MOD;
		}
	}
	printf("%d\n",ans);
}

B.Groundhog-and-Apple-Tree

标签:树形dp,相邻交换最优原则(?)

tot[i]表示走完i这颗子树之后hp的变化量
dp[i]表示在走i这颗子树过程中最多损失多少hp(或者说需要多少hp才能走完i这颗子树)
需要注意的是这道题同时包含了点值和边值两种权值,需要定义清楚到底包含了哪些点和边(代码里tot[i]和dp[i]都包含了i这个点连向父结点的那条边)

目标就是安排访问子树的顺序,使得dp[1]尽可能小。

比较显然的是一定先走tot[x]>0的子树,再走tot[x]<0的子树(不理解的话可以考虑一下只有两颗子树,一颗tot[x]>0一颗tot[x]<0的情形),且对于tot[x]>0的子树内部一定按照dp[x]的大小从小到大排序,问题的关键是如何安排tot[x]<0的子树的内部顺序。

此处重点是有一个所谓的相邻交换最优原则(借用题解上面的说法):考虑任意相邻的i和j(先走i,再走j),交换i和j的顺序只会对这两颗子树产生影响,那么什么情况下交换i和j的顺序后一定是更优的呢?即 m i n { d p [ i ] , d p [ j ] − t o t [ i ] } > m i n { d p [ j ] , d p [ i ] − t o t [ j ] } min\{dp[i],dp[j]-tot[i]\}>min\{dp[j],dp[i]-tot[j]\} min{dp[i],dp[j]tot[i]}>min{dp[j],dp[i]tot[j]},那么交换后一定比当前的顺序更优。由于只考虑tot[x]<0的情况,于是可以把这个不等式转化一下,也就是 t o t [ i ] + d p [ i ] < t o t [ j ] + d p [ j ] tot[i]+dp[i]<tot[j]+dp[j] tot[i]+dp[i]<tot[j]+dp[j]

这样一来,我们把所有子树根据tot[x]+dp[x]从大到小排序后的顺序一定是最优解之一,因为对于其他的情况,根据相邻交换最优原则,总是可以通过一系列的相邻交换,最终使得顺序安排是有序的,且每一步相邻交换都可以确保是使得结果更优的。(所以这个结论的证明其实是一个反证法)至于tot[x]+dp[x]相同的点,它们之间的顺序其实无关紧要。

#include<bits/stdc++.h>
#define debug(x) cerr<<#x<<" : "<<x<<endl;
#define LL long long
using namespace std;

const int N=1e5+5;

struct Edge{
	int to,v;
};

vector<Edge>G[N];

int T,n,a[N];

LL tot[N],dp[N];

void init() {
	for (int i=1;i<=n;i++) {
		G[i].clear();
		dp[i]=tot[i]=0;
	}
}

void dfs(int x,int f,int val) {
	tot[x]+=a[x]-2LL*val;
	if (G[x].size()==1 && f!=-1) {
		dp[x]=max(1LL*val,2LL*val-a[x]);
		return;
	}
	vector<int>vc1,vc2;
	for (auto T:G[x]) {
		int to=T.to,v=T.v;
		if (to==f) continue;
		dfs(to,x,v);
		tot[x]+=tot[to];
		if (tot[to]>=0) vc1.push_back(to);
		else vc2.push_back(to);
	}
	sort(vc1.begin(),vc1.end(),[&](int u,int v){return dp[u]<dp[v];});
	sort(vc2.begin(),vc2.end(),[&](int u,int v){return dp[u]+tot[u]>dp[v]+tot[v];});
 	LL sum=0;
	for (auto now:vc1) {
		dp[x]=max(dp[x],dp[now]-sum);
		sum+=tot[now];
	}
	for (auto now:vc2) {
		dp[x]=max(dp[x],dp[now]-sum);
		sum+=tot[now];
	}
	dp[x]=max(1LL*val,max(dp[x]+val-a[x],2LL*val-a[x]-sum));
}

void solve() {
	scanf("%d",&n);
	init();
	for (int i=1;i<=n;i++) {
		scanf("%d",&a[i]);
	}
	for (int i=1;i<=n-1;i++) {
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		G[u].push_back({v,w});
		G[v].push_back({u,w});
	}
	dfs(1,-1,0);
	printf("%lld\n",max(0LL,dp[1]));
}

int main() {
	cin>>T;
	while(T--) solve();
	return 0;
}

J.The-Escape-Plan-of-Groundhog

标签:二维前缀和

暴力枚举行区间,然后用前缀和维护列,遇到整列都是1的情况就在cnt里记录当前的前缀和,并根据之前的记录情况计算答案。遇到行上的1不连续时就清空cnt。

#include<bits/stdc++.h>
using namespace std;

const int N=5e2+5;

int n,m;

int row[N][N],col[N][N],tot[N][N],a[N][N];

int sum,ans;

int cnt[N*N*2];

vector<int>ls;

void modify(int sum) {
	ans+=cnt[sum-1]+cnt[sum]+cnt[sum+1];
}

void cnt_clear() {
	for (auto x:ls) cnt[x]=0;
	ls.clear();
}

int main() {
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++) {
		for (int j=1;j<=m;j++) {
			scanf("%d",&a[i][j]);
			if (a[i][j]==0) a[i][j]=-1;
			row[i][j]=row[i][j-1]+a[i][j];
			col[i][j]=col[i-1][j]+a[i][j];
			tot[i][j]=tot[i-1][j]+tot[i][j-1]-tot[i-1][j-1]+a[i][j];
		}
	}
	for (int i=1;i<=n-1;i++) {
		for (int j=i+1;j<=n;j++) {
			for (int k=1;k<=m;k++) {
				if (a[i][k]==-1 || a[j][k]==-1) {
					cnt_clear();sum=0;continue;
				}
				if (col[j][k]-col[i-1][k]==j-i+1) {
					modify(sum+N*N);
					sum+=col[j-1][k]-col[i][k];
					if (cnt[sum+N*N]==0) ls.push_back(sum+N*N);
					cnt[sum+N*N]++;
				}
				else {
					sum+=col[j-1][k]-col[i][k];
				}
			}
			cnt_clear();sum=0;
		}
	}
	printf("%d\n",ans);
	return 0;
}

第十场

E.Game

标签:二分答案

推方块的操作其实本质上就是把某一列的一个方块移到它左侧比它低的列上,也就相当于说第i列的方块可以与第[1…i-1]列分摊。考虑二分答案,若当前答案为x,从左到右统计前缀和,计算当前将方块分摊后能否做到每一列都小于等于x。

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
using namespace std;

const int N=1e5+5;

int T,n,a[N];

bool check(int x) {
	LL sum=0;
	for (int i=1;i<=n;i++){
		sum+=a[i];
		if ((sum-1)/i+1>x) return 0;
	}
	return 1;
}

int main() {
	cin>>T;
	while(T--) {
		cin>>n;
		for (int i=1;i<=n;i++) scanf("%d",&a[i]);
		int l=1,r=1e9;
		while(l<r) {
			int mid=(l+r)>>1;
			if (check(mid)) r=mid;
			else l=mid+1;
		}
		printf("%d\n",l);
	}
}

J.Identical-Trees

标签:树形dp,二分图最小权匹配

奇怪的树形dp又增加了。。二分图匹配还能用来做dp转移是我没想到的。

dp[i][j]表示把第一棵树中的i子树变为和第二颗树中的j子树完全一样所需要改变的点的个数。

那么首先i和j子树的个数肯定要相等,否则dp[i][j]=INF

假设子树个数都为k,要给这2k个点找到一个匹配,可以给u、v两点再两两连一条权值为dp[u][v]的边,跑一次最小权匹配(或者最小费用流),如果i!=j还要把i改成j,所以花费+1,最后得到的答案就是dp[i][j]。

最后输出dp[root1][root2]即可

写代码的话要在转移前先把dp[u][v]都预处理好,再把处理出来的结果作为边权建图跑费用流。(因为跑费用流的部分是共用的,等建图的时候再处理权值会导致建图的过程被打乱)

#include<bits/stdc++.h>
using namespace std;
const int N=6e5+5,M=5e2+5;
const int INF=1e9,inf=1e3;

int n,m;

struct MCMF {
	struct E{
		int from,to,flow,dis;
	};
	queue<int>Q;
	vector<E>edge;
	vector<int>G[N];
	bool vis[N];
	int n,m,s,t,dis[N],pre[N],last[N],flow[N],maxflow,mincost;
	void init(int _n,int _s,int _t) {
		n=_n,s=_s,t=_t;
		for (int i=0;i<=n;i++) G[i].clear();
		edge.clear();m=0;
		maxflow=mincost=0;
	}
	void addEdge(int from,int to,int flow,int cost) {
		edge.push_back({from,to,flow,cost});
		edge.push_back({to,from,0,-cost});
		G[from].push_back(m++);
		G[to].push_back(m++);
	}
	bool spfa(int s,int t) {
		for (int i=0;i<=n;i++) {
			dis[i]=9999;flow[i]=9999;vis[i]=0;
		}
		Q.push(s);dis[s]=0;vis[s]=1;pre[t]=-1;
		while(!Q.empty()) {
			int now=Q.front();
			Q.pop();
			vis[now]=0;
			for (int i:G[now]) {
				if (edge[i].flow && dis[edge[i].to]>dis[now]+edge[i].dis) {
					dis[edge[i].to]=dis[now]+edge[i].dis;
					pre[edge[i].to]=now;
					last[edge[i].to]=i;
					flow[edge[i].to]=min(flow[now],edge[i].flow);
					if (!vis[edge[i].to]) {
						vis[edge[i].to]=1;
						Q.push(edge[i].to);
					}
				}
			}
		}
		return pre[t]!=-1;
	}
	void go() {
		while(spfa(s,t)) {
			int now=t;
			maxflow+=flow[t];
			mincost+=flow[t]*dis[t];
			while(now!=s) {
				edge[last[now]].flow-=flow[t];
				edge[last[now]^1].flow+=flow[t];
				now=pre[now];
			}
		}
	}
}mcmf;

vector<int>G1[M],G2[M];

int r1,r2;

int dp[M][M];

int solve(int sr1,int sr2) {
	if (~dp[sr1][sr2]) return dp[sr1][sr2];
	if (G1[sr1].size()!=G2[sr2].size()) return dp[sr1][sr2]=inf;
	int sz=G1[sr1].size();
	for (int i=1;i<=sz;i++)
		for (int j=1;j<=sz;j++) solve(G1[sr1][i-1],G2[sr2][j-1]);
	int s=0,t=2*sz+1;
	mcmf.init(2*sz+1,s,t);
	for (int i=1;i<=sz;i++) mcmf.addEdge(s,i,1,0);
	for (int i=1;i<=sz;i++) mcmf.addEdge(sz+i,t,1,0);
	for (int i=1;i<=sz;i++)
		for (int j=1;j<=sz;j++) mcmf.addEdge(i,sz+j,1,solve(G1[sr1][i-1],G2[sr2][j-1]));
	mcmf.go();
	int res=mcmf.mincost;
	if (sr1!=sr2) res++;
	if (res>inf) res=inf;
	return dp[sr1][sr2]=res;
}

int main() {
	scanf("%d",&n);
	for (int i=1;i<=n;i++) {
		int u; scanf("%d",&u);
		if (u==0) r1=i;
		else G1[u].push_back(i);
	}
	for (int i=1;i<=n;i++) {
		int u; scanf("%d",&u);
		if (u==0) r2=i;
		else G2[u].push_back(i);
	}
	memset(dp,-1,sizeof(dp));
	printf("%d",solve(r1,r2));
	return 0;
}
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值