1003 Emergency (25 分)

本文介绍了一段C++代码,用于解决有向图中从原点到目标点的最短路径问题。代码利用Dijkstra算法,考虑了路径上的救援队人数和权重,并在过程中更新最短距离、救援队数量和路径权重。最终,程序输出从原点到目标点的最短路径数量和总权重。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
using namespace std;
vector<vector<int>> edges(501,vector<int>(501,INT_MAX));
//有向图
vector<int> dis(501,INT_MAX),weight(501,0),w(501,0),nums(501,0);
//分别对应从原点到某点的最短距离,某点所拥有的救援队人数,从原点到某点积累的救援队人数,从原点到某点的最短路径数量
vector<bool> visited(501,false);//已确认的最短路径定点集合
int N,M,C1,C2;
int main(){
    cin>>N>>M>>C1>>C2;
    for(int i=0;i<N;i++) cin>>weight[i];
    for(int i=0;i<M;i++){
        int r,c,value;
        cin>>r>>c>>value;
        edges[r][c]=value,edges[c][r]=value;
    }
    w[C1]=weight[C1];
    nums[C1]=1;
    dis[C1]=0;
    for(int i=0;i<N;i++){
        int u=-1,minn=INT_MAX;
        for(int j=0;j<N;j++){
            if(!visited[j]&&dis[j]<minn){
                u=j;
                minn=dis[j];
            }
        }
        if(u==-1) break;
        visited[u]=true;
        for(int j=0;j<N;j++){
            if(!visited[j]&&edges[u][j]!=INT_MAX&&dis[u]+edges[u][j]<dis[j]){
                dis[j]=dis[u]+edges[u][j];
                nums[j]=nums[u];
                w[j]=weight[j]+w[u];
            }else if(!visited[j]&&edges[u][j]!=INT_MAX&&dis[u]+edges[u][j]==dis[j]){
                nums[j]+=nums[u];
                if(w[j]<weight[j]+w[u]) w[j]=weight[j]+w[u];
            }
        }
    }
    cout<<nums[C2]<<' '<<w[C2];
    return 0;
}

一遍过了……感觉不真实(太模糊了)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值