关于fluent中亚松弛因子under-ralexation factors的思考

亚因子是用来控制变量每次迭代的变化的,主要影响迭代的收敛速度和收敛情况,松弛因子在0-1之间,越小代表两次迭代变化越小,这样计算比较稳定,但是计算速度慢。

一般fluent默认的松弛因子对于大多数问题都是适用的。如果你的问题比较复杂,开始阶段不容易收敛的话,可以相应把松弛因子改小一点。

亚松弛因子    

由于流体力学中要求解非线性的方程,在求解过程中,控制变量的变化是很必要的,这就通过松弛因子来实现的。它控制变量在每次迭代中的变化。也就是说,变量的新值为原值加上变化量乘以松弛因子。

如:

A1=A0+B*DETA

A1 新值

A0 原值

B 松弛因子

DETA 变化量

松弛因子可控制收敛的速度和改善收敛的状况!B=1,相当于不用松弛因子。B>1,为超松弛因子,加快收敛速度。B<1,欠松弛因子,改善收敛的条件。一般来讲,大家都是在收敛不好的时候,采用一个较小的欠松弛因子。Fluent里面用的是欠松弛,主要防止两次迭代值相差太大引起发散。松弛因子的值在0~1之间,越小表示两次迭代值之间变化越小,也就越稳定,但收敛也就越慢。

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值