ajax传值到后台失败的问题

在后台数据传输过程中遇到一个坑,原本尝试通过数组存储数据,但实际存储方式导致数据类型不符合要求,无法成功传入后台。通过调整为使用对象存储,并正确设置ajax请求,最终成功将数据以json格式传递给后台。
摘要由CSDN通过智能技术生成

        最近写后台的时候,发现我写了一个数组想传进后台,但是后台一直接收不到,经过种种排查,发现是我的数据类型有一定错误。首先我定义了一个data=[],然后将数据以data['commodity_name'] = $('input[name = "commodity_name"]').val()的方式存入该数组中,但是这样的话并不是数组,好像与object的格式也不太对,最后console.log是这样的:

最外面是[],这样的数据传不到后台。

更改:

var data = {};
data.commodity_name = $('input[name = "commodity_name"]').val();
data.commodity_code = $('input[name = "commodity_code"]').val();
$.ajax({
                method: 'post',
                url: "doEditConmmodityDetail",
                dataType: 'json',
                data: {
                    'id': id,
                    'data': data
                },
                success: function(res) {
                    if (res.code > 0) {
                        layer.msg('修改成功', function() {
                            layer.closeAll();
                        })
                    } else {
                        layer.msg('出现错误');
                        console.log(data)
                        console.log(res)
                    }

                }
            })

最后成功将数据传入后台:

这个坑真的大-__-

### 使用 Stable Diffusion 模型生成视频的方法 为了利用 Stable Diffusion 模型创建视频内容,通常会采用一系列特定的技术流程来实现这一目标。以下是具体方法: #### 准备工作环境 确保安装并配置好必要的软件包和工具链。这包括但不限于 PyTorch 和 Hugging Face 的 Diffusers 库[^2]。 ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors ``` #### 加载预训练模型 通过调用 `diffusers` 中提供的 API 来加载预先训练好的 Stable Diffusion 模型实例。这些模型能够执行基于文本到图像或多帧序列的任务转换。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` #### 定义动画参数 设置用于控制视频合成的关键变量,比如帧率、持续时间以及每秒产生的图片数量等属性。此外还需要定义场景之间的过渡效果和平滑度选项。 ```python num_inference_steps = 50 # 推理步数 guidance_scale = 7.5 # 创意指导强度 video_length_seconds = 8 # 输出视频长度(秒) frames_per_second = 24 # 帧速率 (FPS) total_frames = int(video_length_seconds * frames_per_second) ``` #### 创建连续帧序列 对于每一帧都应用相同的 prompt 或者动态调整 prompts 来构建连贯的故事线。可以引入一些变化因素使相邻两帧之间存在差异从而形成流畅的动作感。 ```python prompts = ["A beautiful landscape at sunrise"] * total_frames for i in range(total_frames): if i % 10 == 0 and i != 0: new_prompt = f"A beautiful landscape with {i//10} birds flying over it." prompts[i:] = [new_prompt]*(total_frames-i) images = [] for frame_idx in range(total_frames): image = pipeline(prompts[frame_idx], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] images.append(image) ``` #### 合成最终视频文件 最后一步就是把所有的静态图象拼接起来成为一个完整的 MP4 文件或者其他格式的多媒体资源。可借助第三方库如 moviepy 实现此操作。 ```python from moviepy.editor import ImageSequenceClip clip = ImageSequenceClip(images, fps=frames_per_second) output_video_path = "./generated_video.mp4" clip.write_videofile(output_video_path, codec="libx264", audio=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值