- 博客(11)
- 收藏
- 关注
原创 深度学习9:过拟合问题
过拟合是指模型在训练数据上表现过于优秀,但对于新数据或测试数据的泛化能力较差的现象。简单来说,就是模型过度地拟合了训练数据中的细节和噪声,以至于无法很好地适应其他未知数据。
2024-03-18 18:38:05 974
原创 深度学习8:卷积神经网络
卷积神经网络,主要用于提取图像的特征,也称为特征提取网络。我们之前提到的全连接网络是根据提取的特征对样本进行分类,所以也称为分类网络。卷积神经网络主要涉及到的几个操作包括:卷积(Convolution),池化(Pooling)和relu激活函数。
2024-03-18 17:00:04 886
原创 深度学习7:全连接神经网络(详细构造)
一个全连接网络层是由nn.Linear()函数定义的,其中①in_features=m,表示该网络层有m个输入特征,②out_features=k表示该网络层有k个神经元,也代表着有k个输出特征,③bias=False表示所有神经元都不带有偏置项。nn.Linear()函数的作用是建立一个全连接神经网络层,其中m个输入特征,k个输出特征,一共有m*k个权重。如果bias为True,则需要学习优化的参数多增加k个。
2024-03-13 18:54:08 4454
原创 深度学习6:全连接神经网络(简单二分类问题)
全连接神经网络(Fully Connected Neural Network,FCNN)是由一系列全连接层组成的深度神经网络,是深度学习中的基本架构。全连接层的特点是相邻两层的任意两个神经元之间均有连接。接下来,我们将用一个简单的二分类的全连接神经网络结构对数据集进行训练。以上,本文内容参考自蒙祖强,欧元汉编著的《深度学习理论与应用》。详细内容可关注其他笔记,这里不再过多赘述)
2024-03-13 13:58:13 491
原创 深度学习5:使用PyTorch框架实现二分类任务
离散点为(2.49,2.86)(0.50,0.21)(2.73,2.91)(3.47,2.34)(1.38,0.37)(1.03,0.27)(0.59,1.73)(2.25,3.75)(0.15,1.45)(2.73,3.42)分别标记为1,0,1,1,0,0,0,1,0,1。目前,比较开源常见的深度学习框架包括:Caffe/Caffe2、Torch、TensorFlow、Keras、MXNet、PaddlePaddle、MindSpore、CNTK、DL4J等。m为样本的特征个数,bias表示偏置项。
2024-03-12 21:27:00 599 1
原创 深度学习4:感知器-三种激活函数及梯度下降算法
一个感知器可以理解成有多个线性拟合组合成的计算单元,由不同的输入特征(x)依据不同的权重(w)及偏置项(b)加权求和得到了激活函数(σ),如图。首先输入的m个特征x1到xm经过不同的权重拟合,经过加权求和,加偏置项,激活函数变换后得到了我们需要的结果y,所以只要我们确定了w和b(权重和偏置项)我们的感知器基本就是确定的。我们不难发现,sigmoid函数和Tanh函数对于x的两端无穷都是无限逼近某个实数(1,-1和0),这表明,这两种函数对于x附近的值有着很强的处理区分能力。
2024-03-12 20:45:58 1365 1
原创 深度学习3:PyTorch保存和调用深度学习模型及模型参数
参数有一个很重要的属性:requires_grad,默认为True,意为:可学习的;如果是False,则不可被更新学习。
2024-03-11 21:30:33 505
原创 深度学习2:PyTorch访问深度学习模型中网络层的结构
获取分块网络层名称–使用nn.Module的named_children()方法实现。获取分块网络层–使用nn.Module的children()方法实现。获取所有网络层–使用modules()方法实现。
2024-03-11 21:01:40 240
原创 深度学习1:PyTorch张量tensor的基本使用
在pytorch中,通常用一维张量表示向量,二维张量表示矩阵或者一张单通道图像,三维张量表示一个特征图或者一张彩色图片,用四维张量表示一个批量的特征图或者彩色图像,用五维张量表示带时间或者视频的数据#可以通过[[]]数中括号的个数来判断是几阶张量x = torch.tensor([2])#0阶张量x = torch.tensor([2,3])#1阶张量x = torch.tensor([[2,3],[4,5]])#2阶张量。
2024-03-11 20:49:59 718
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人