安装Pytorch时NVIDIA驱动更新,CUDA版本问题

安装PytorchGPU版攻略
本文分享了作者在安装PytorchGPU版过程中遇到的问题及解决方案,重点讲述了如何通过更新显卡驱动来匹配CUDA版本,最终成功安装Pytorch并启用GPU加速。

近几个月就要开题了,准备做图像处理,需要安装Pytorch,在装pytorch GPU版的时候踩过不少坑,因为显卡的原因一直装不好GPU版,很困惑很痛苦,网上找了许多教程都没有说更新驱动driver的事,也问了许多博主,要么没回,要么答非所问(可能是我没说清楚问题),基本都只谈到CUDA版本的选择,很是困惑,都准备在双11分期买个显卡Nb的电脑了,又试了试,最后还是在b站无意间看到一个组装电脑的大佬安装驱动才恍然大悟,可算找到解决途径了–更新驱动。但驱动版本与CUDA版本又是相对应的,用第三方软件(驱动精灵或360)更新驱动无法获得你需要的驱动版本号,一般都是安装最新的,不建议使用此法。
在网上百度,找到一篇配置与我差不多的安装pytorch,但是,也没有讲更新驱动的问题(其实他更新了的但是只写了安装CUDA)…在此记录做个小总结吧。
电脑有几年了我的显卡很老(GeForce 940M),CUDA9.1,驱动版本号391.35,下面是更新前的显卡信息:
在这里插入图片描述
在这里插入图片描述

以前不懂,就直接去下载CUDA10.2安装,但发现没用,因为与驱动不匹配。他们的匹配关系如下:
数据来源:CUDA与驱动版本的对应关系
在这里插入图片描述
这是pytorch官网
在这里插入图片描述

我准备安装pytorch10.2,于是需要CUDA10.2,去下载对应的驱动,上面表格可以看到,在Windows下驱动版本号必须大于441.22。目前我的是CUDA9.1,驱动号是391,去英伟达官网下载驱动:
NVIDIA驱动
搜索你电脑对应的驱动:
在这里插入图片描述
找到最接近441.22的下载:
在这里插入图片描述
安装(可百度,很简单就不再说了)完成后在NVIDIA控制面板查看,显卡信息就与之前有所不同,驱动就更新成功了:
在这里插入图片描述
在这里插入图片描述
然后再去下载CUDA10.2安装:CUDA10.2官网下载
在这里插入图片描述
安装完成在cmd输入nvcc -V查看是否安装成功:
在这里插入图片描述
现在终于可以安装pytorch了…(先安装Anaconda)
安装完成,终于可以使用显卡了。。。
在这里插入图片描述
国庆期间装了多少遍pytorch都是显卡不可用(False),都因为不知道驱动的更新…太难了,本人很懒本来都没想发此文章,但一想这个问题困了我那么久,要是早就有人写过一样的文章就好了,一天之内我就能装好软件,不用浪费那么多时间,想想还是写下来吧,希望踩到同样坑的童鞋可以看到此文,并有所帮助。

<think>好的,我现在需要回答用户关于安装PyTorch前是否需要更新CUDA版本问题。首先,我得理清楚PyTorchCUDA版本之间的关系。根据用户提供的引用资料,有几个关键点需要注意。 首先,引用[1]提到要确保PyTorch版本CUDA版本兼容,如果用户需要特定CUDA版本,应该安装对应的PyTorch版本。这说明用户可能不需要更新系统CUDA,而是选择与现有CUDA匹配的PyTorch版本。接着,引用[2]指出PyTorch安装包通常会自带所需的CUDA工具包,因此即使系统有不同版本CUDA安装PyTorch会自带合适的版本。这意味着用户不必提前更新系统CUDA,只要安装正确版本PyTorch即可。然后,引用[3]提到版本不匹配是常见问题,建议通过官网查询兼容版本,这也支持了选择正确PyTorch版本的重要性。 接下来,我需要整理这些信息,分步骤回答用户的问题。用户可能想知道是否需要主动升级系统CUDA,或者是否PyTorch会处理兼容性问题。根据引用内容,答案应该是后者:用户不需要专门更新系统CUDA,只需选择与系统CUDA兼容的PyTorch版本,或者让PyTorch自带合适的CUDA版本。 还要注意是否需要解释PyTorch自带CUDA的情况,比如如果系统有CUDA 11.4,但安装支持CUDA 11.1的PyTorch,这候系统CUDA是否需要降级?根据引用[2],不需要,PyTorch会自带11.1的工具包,独立于系统CUDA。但用户如果希望利用系统已有的CUDA,可能需要版本匹配,这候需要查询兼容性表格。 可能还需要给出具体步骤,比如如何查看CUDA版本,如何选择PyTorch安装命令,以及如何处理不兼容的情况。例如,使用nvidia-smi查看CUDA版本,然后去PyTorch官网找到对应的安装命令。如果系统CUDA版本过高或过低,可以选择安装自带CUDAPyTorch,或者考虑升级系统CUDA,但后者通常不是必须的。 最后,需要总结建议,强调检查兼容性和使用官方安装指南的重要性,同提醒用户即使系统CUDA版本不匹配,PyTorch自带的版本也能正常工作。</think>### 分步解答 在安装 PyTorch 前是否需要更新 CUDA 版本,主要取决于以下因素: --- #### 1. **PyTorchCUDA 的兼容性要求** - **核心原则**:PyTorch 安装包需与系统 CUDA 驱动版本兼容。 例如:若系统 CUDA 驱动版本为 11.4,需选择支持 CUDA 11.x 的 PyTorch 版本[^1][^3]。 - **关键点**: - **系统 CUDA 驱动**:由 NVIDIA 显卡驱动提供,可通过 `nvidia-smi` 查看(如 `CUDA Version: 11.4`)。 - **PyTorch 内置 CUDA 工具包**:PyTorch 安装包通常自带特定版本CUDA 运行库(如 `cu113` 表示 CUDA 11.3)[^2]。 - **兼容规则**:PyTorch 内置的 CUDA 工具包版本 ≤ 系统 CUDA 驱动版本。 --- #### 2. **是否需要更新系统 CUDA 驱动?** - **情况一:无需更新** - 如果系统 CUDA 驱动版本PyTorch 内置 CUDA 工具包版本(例如系统 CUDA 11.4,PyTorch 使用 CUDA 11.1),可直接安装 PyTorch,无需更新 CUDA[^3]。 - PyTorch 会优先使用自带的 CUDA 工具包,与系统驱动版本解耦。 - **情况二:需要更新** - 若系统 CUDA 驱动版本过旧(例如 CUDA 10.0),而需要安装依赖更高 CUDA 版本PyTorch(如 CUDA 11.7),则需先升级 NVIDIA 显卡驱动以支持新版本 CUDA[^1]。 --- #### 3. **操作步骤** - **步骤 1:查看系统 CUDA 驱动版本** ```bash nvidia-smi # 输出中的 "CUDA Version" 表示支持的最高 CUDA 运行版本 ``` - **步骤 2:选择兼容的 PyTorch 版本** 访问 [PyTorch 官方安装页面](https://pytorch.org/get-started/locally/),根据系统 CUDA 驱动版本选择安装命令。 - 示例:若系统支持 CUDA 11.4,可选择 `cu113`(CUDA 11.3)或 `cu117`(CUDA 11.7)的 PyTorch 版本。 - **步骤 3:安装 PyTorch** 使用官方提供的 `conda` 或 `pip` 命令安装,例如: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` --- #### 4. **常见问题解答** - **Q1:为什么 PyTorch 要自带 CUDA 工具包?** A1:确保用户无需手动配置复杂的 CUDA 环境,降低安装门槛。 - **Q2:系统已安装 CUDA 11.4,能否使用 PyTorchCUDA 11.3?** A2:可以。PyTorch 自带的 CUDA 11.3 工具包会独立运行,与系统 CUDA 11.4 无冲突。 --- ### 总结 **不需要强制更新系统 CUDA 驱动**,只需选择与系统驱动兼容的 PyTorch 版本即可。若需使用新特性(如 CUDA 12.x),才需升级驱动。建议通过 PyTorch 官网查询兼容性并直接使用官方安装命令[^3]。 ---
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值