思路:从四个数组中找到四个元素相加等于零,暴力解法就是用四个for循环进行遍历,
如何用到哈希法呢?
——可以效仿两数相加这道题,有四个数组,那么就将他们分成两个数组,先遍历数组1,将其变成哈希表
哈希表的结构是?
——因为数组内的元素范围很大,所以不可以将将元素映射到数组里面,数组的大小难以确定,并且会浪费大量的内存,然后不仅要储存元素,还要储存出现的次数,所以选择使用map,而不使用set,
代码实现
struct hashTable {
int key;
int val;
UT_hash_handle hh;
};
int fourSumCount(int* A, int ASize, int* B, int BSize, int* C, int CSize, int* D, int DSize) {
struct hashTable* hashtable = NULL;
for (int i = 0; i < ASize; ++i) {
for (int j = 0; j < BSize; ++j) {
int ikey = A[i] + B[j];
struct hashTable* tmp;
HASH_FIND_INT(hashtable, &ikey, tmp);
if (tmp == NULL) {
struct hashTable* tmp = malloc(sizeof(struct hashTable));
tmp->key = ikey, tmp->val = 1;
HASH_ADD_INT(hashtable, key, tmp);
} else {
tmp->val++;
}
}
}
int ans = 0;
for (int i = 0; i < CSize; ++i) {
for (int j = 0; j < DSize; ++j) {
int ikey = -C[i] - D[j];
struct hashTable* tmp;
HASH_FIND_INT(hashtable, &ikey, tmp);
if (tmp != NULL) {
ans += tmp->val;
}
}
}
return ans;
}
思路:和有效字母异位的解题大体一样,但是,这道题是将两个数组都变成哈希表,然后才进行比较他们的值,如果ransomNote大于magazine,那么就返回false,
为什么不能和有效字母异位一样,只一个哈希表,然后对哈希表进行减值操作呢?
——数组2的值可能会超过数组一的值,那么就会出现一种情况,数值一的值会变成负数,那么就会返回false了
代码实现
bool canConstruct(char* ransomNote, char* magazine) {
int record1[26] = {0};
int record2[26] = {0};
for(int i = 0; i < strlen(ransomNote); i++){
record[ransomNote[i] - 'a']++;
}
for(int i = 0; i < strlen(magazine); i++){
record[magazine[i] - 'a']++;
}
for(int i =0; i <strlen(record); i++){
if(record1[i] > record2[i])
return false;
}
return true;
}
思路:可以用三个for遍历三个数组,枚举出每一种可能出现的情况,
为什么不采用哈希表,而是用双指针?
——这道题目和两数之和的区别在于,要进行去重,而对三个数组去重,难度并不小,
为什么用双指针?
——a+b+c可以看成a+(b+c),把b和c看做一个整体,然后和a进行比较,然后这里就和长度最小的子数组一样,这里滑动窗口是向内收缩
为什么要进行排序?
——因为要进行去重操作,排序可以减少去重的操作
a的去重为什么是nums[i]==nums[i-1]不是nums[i]==nums[i+1]
——前者是向前检查是否有重复,而后者相反,题目要求的是没有重复的三元组,但是里面的元素是可以相同的,所以如果是向后去重的话,那么就有些情况被删去了
//qsort辅助cmp函数
int cmp(const void* ptr1, const void* ptr2) {
return *((int*)ptr1) > *((int*)ptr2);
}
int** threeSum(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) {
//开辟ans数组空间
int **ans = (int**)malloc(sizeof(int*) * 18000);
int ansTop = 0;
//若传入nums数组大小小于3,则需要返回数组大小为0
if(numsSize < 3) {
*returnSize = 0;
return ans;
}
//对nums数组进行排序
qsort(nums, numsSize, sizeof(int), cmp);
int i;
//用for循环遍历数组,结束条件为i < numsSize - 2(因为要预留左右指针的位置)
for(i = 0; i < numsSize - 2; i++) {
//若当前i指向元素>0,则代表left和right以及i的和大于0。直接break
if(nums[i] > 0)
break;
//去重:i > 0 && nums[i] == nums[i-1]
if(i > 0 && nums[i] == nums[i-1])
continue;
//定义左指针和右指针
int left = i + 1;
int right = numsSize - 1;
//当右指针比左指针大时进行循环
while(right > left) {
//求出三数之和
int sum = nums[right] + nums[left] + nums[i];
//若和小于0,则左指针+1(因为左指针右边的数比当前所指元素大)
if(sum < 0)
left++;
//若和大于0,则将右指针-1
else if(sum > 0)
right--;
//若和等于0
else {
//开辟一个大小为3的数组空间,存入nums[i], nums[left]和nums[right]
int* arr = (int*)malloc(sizeof(int) * 3);
arr[0] = nums[i];
arr[1] = nums[left];
arr[2] = nums[right];
//将开辟数组存入ans中
ans[ansTop++] = arr;
//去重
while(right > left && nums[right] == nums[right - 1])
right--;
while(left < right && nums[left] == nums[left + 1])
left++;
//更新左右指针
left++;
right--;
}
}
}
//设定返回的数组大小
*returnSize = ansTop;
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int z;
for(z = 0; z < ansTop; z++) {
(*returnColumnSizes)[z] = 3;
}
return ans;
}
int comp(const void* a, const void* b) {
return *(int*)a - *(int*)b;
}
int** fourSum(int* nums, int numsSize, int target, int* returnSize, int** returnColumnSizes) {
int** quadruplets = malloc(sizeof(int*) * 1001);
*returnSize = 0;
*returnColumnSizes = malloc(sizeof(int) * 1001);
if (numsSize < 4) {
return quadruplets;
}
qsort(nums, numsSize, sizeof(int), comp);
int length = numsSize;
for (int i = 0; i < length - 3; i++) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
if ((long) nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) {
break;
}
if ((long) nums[i] + nums[length - 3] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
for (int j = i + 1; j < length - 2; j++) {
if (j > i + 1 && nums[j] == nums[j - 1]) {
continue;
}
if ((long) nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) {
break;
}
if ((long) nums[i] + nums[j] + nums[length - 2] + nums[length - 1] < target) {
continue;
}
int left = j + 1, right = length - 1;
while (left < right) {
long sum = (long) nums[i] + nums[j] + nums[left] + nums[right];
if (sum == target) {
int* tmp = malloc(sizeof(int) * 4);
tmp[0] = nums[i], tmp[1] = nums[j], tmp[2] = nums[left], tmp[3] = nums[right];
(*returnColumnSizes)[(*returnSize)] = 4;
quadruplets[(*returnSize)++] = tmp;
while (left < right && nums[left] == nums[left + 1]) {
left++;
}
left++;
while (left < right && nums[right] == nums[right - 1]) {
right--;
}
right--;
} else if (sum < target) {
left++;
} else {
right--;
}
}
}
}
return quadruplets;
}