Learning with Errors
【from wiki】容错学习问题 (通常称LWE问题,是 Learning with errors 的缩写)是一个机器学习领域中的怀疑难解问题。由 Oded Regev 在2005年提出,他因此赢得2018年哥德尔奖。这是一个极性学习问题的一般形式。Regev同时证明了LWE问题至少比几个最坏情况下的格问题要难。这个问题在最近[1][2] 被用作一种难度假设以创建公钥密码系统,例如 Peikert 提出的容错环学习密钥交换。虽然来自机器学习领域,但是学习时出错问题实际上是理论计算机科学中的计算复杂度问