MrCharles
码龄7年
  • 1,413,150
    被访问
  • 400
    原创
  • 1,413
    排名
  • 8,069
    粉丝
关注
提问 私信

个人简介:隐私

  • 加入CSDN时间: 2015-04-26
博客简介:

MrCharles在CSDN

博客描述:
随便写写
查看详细资料
  • 7
    领奖
    总分 3,313 当月 119
个人成就
  • 博客专家认证
  • 获得770次点赞
  • 内容获得631次评论
  • 获得2,244次收藏
创作历程
  • 10篇
    2022年
  • 117篇
    2021年
  • 53篇
    2020年
  • 68篇
    2019年
  • 42篇
    2018年
  • 12篇
    2017年
  • 40篇
    2016年
  • 127篇
    2015年
成就勋章
TA的专栏
  • 琐碎记录
    50篇
  • 奇思妙想
    3篇
  • 一起学TensorFlow
    6篇
  • WinterSchoolBiometrics2021
    24篇
  • 疑难杂症
    55篇
  • 数说开发程序员
    4篇
  • 个人心情小记
    21篇
  • Monash Call
    11篇
  • 平安指北
    6篇
  • 计算机视觉
    68篇
  • PokerNet
    4篇
  • 生物模式识别
    39篇
  • 指纹识别
    6篇
  • 大数据
    48篇
  • hadoop
    20篇
  • hive
    6篇
  • MapReduce
    4篇
  • Mahout
    5篇
  • java_web_EE_spring
    42篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Learning with Errors

【from wiki】容错学习问题 (通常称LWE问题,是 Learning with errors 的缩写)是一个机器学习领域中的怀疑难解问题。由 Oded Regev 在2005年提出,他因此赢得2018年哥德尔奖。这是一个极性学习问题的一般形式。Regev同时证明了LWE问题至少比几个最坏情况下的格问题要难。这个问题在最近[1][2] 被用作一种难度假设以创建公钥密码系统,例如 Peikert 提出的容错环学习密钥交换。虽然来自机器学习领域,但是学习时出错问题实际上是理论计算机科学中的计算复杂度问
原创
发布博客 2022.05.03 ·
36 阅读 ·
0 点赞 ·
0 评论

Learning with Errors

【from wiki】容错学习问题 (通常称LWE问题,是 Learning with errors 的缩写)是一个机器学习领域中的怀疑难解问题。由 Oded Regev 在2005年提出,他因此赢得2018年哥德尔奖。这是一个极性学习问题的一般形式。Regev同时证明了LWE问题至少比几个最坏情况下的格问题要难。这个问题在最近[1][2] 被用作一种难度假设以创建公钥密码系统,例如 Peikert 提出的容错环学习密钥交换。虽然来自机器学习领域,但是学习时出错问题实际上是理论计算机科学中的计算复杂度问
原创
发布博客 2022.05.03 ·
7 阅读 ·
0 点赞 ·
0 评论

未来可以基于3D打印扫描和互联网实现实时隔空投物

现在3D打印和3D扫描其实已经逐渐被人们重视了,而且在生活中有一些应用。现在疫情严重,发快递又不是很方便,我在想能不能做一个隔空投递,通过网线,不依赖任何其他的东西,只是凭借信息传递实现隔空投物。怎么实现这个呢?我想一个3D打印和扫描仪器加上互联网就可以实现。假设我想从深圳寄一支笔给上海,传统方式下,要先将笔打包,写上地址,交给邮寄员,邮寄公司运送到上海,交给上海的收件人。未来的实时隔空投物就不用这么麻烦了,在深圳使用3D扫描仪,扫描这支笔的结构,把信息保存,并且通过网络发送到上海的接收端,接收端
原创
发布博客 2022.04.24 ·
184 阅读 ·
0 点赞 ·
0 评论

python保存数据的各种方式比较(磁盘空间,时间消耗)

Npy and binary files are both really fast and small for dense data. If the data is sparse or very structured, you might want to use npz with compression, which’ll save a lot of space but cost some load time.If portability is an issue, binary is better th.
原创
发布博客 2022.03.16 ·
574 阅读 ·
0 点赞 ·
1 评论

LSTM CNN Transformer各有各的好处

I’ll list some bullet points of the main innovations introduced by transformers , followed by bullet points of the main characteristics of the other architectures you mentioned, so we can then compared them.TransformersTransformers (Attention is all you
原创
发布博客 2022.02.16 ·
718 阅读 ·
0 点赞 ·
0 评论

不同屏幕尺寸相差大么和不同尺寸屏幕比较

在这里插入图片描述
原创
发布博客 2022.02.03 ·
243 阅读 ·
1 点赞 ·
1 评论

为什么我们需要ablation study?

用于验证哪一个组件起了最重要的作用;2)验证哪一组参数达到最好效果,其他参数为何不可以3)最主要,为什么可以这么好的效果
原创
发布博客 2022.01.29 ·
383 阅读 ·
2 点赞 ·
0 评论

什么是peer review

“Peer review”趣图(原图来自网络)
原创
发布博客 2022.01.25 ·
101 阅读 ·
0 点赞 ·
0 评论

Hamming distance 可以做损失函数么?

Hamming distance 是不可微的,选择做损失函数是不行的,要做一些smoothing才行!Hamming loss is by definition not differentiable, so for small movements of trainable weights you will never experience any changes in the loss. I imagine it is only added to be used for final measurement
原创
发布博客 2022.01.20 ·
134 阅读 ·
0 点赞 ·
0 评论

使用jupyter notebook 时明明已经安装了某个lib,还是出现ModuleNotFoundError

这是因为jupyter notebook要选择不同conda环境,但是运行jupyter 的时候,没有使用到这个环境,即使你已经conda activate这个环境,再执行jupyter。解决方法就是将conda环境写入jupyter notebook的kernel中在jupyter notebook中不同环境之间是通过切换kernel实现的。在conda环境下创建kernel文件,命令是conda install -n 环境名称 ipykernel。先进入conda的某个环境中,然后执行以下命令。p
原创
发布博客 2022.01.11 ·
410 阅读 ·
1 点赞 ·
0 评论

首尔来电(1):2021-2022

如唔
原创
发布博客 2022.01.01 ·
372 阅读 ·
2 点赞 ·
2 评论

内存不足够怎么办,swap空间来相伴

工作研究中经常需要intensive的模型训练,但是目前可用的两台机器都是32GB的内存搭配24GB显存的RTX3090,因此使用起来经常发现内存不足够,进程会被系统直接kill。可是我们又想把所有的数据集加载到内存中,加快我们模型的训练速度,不然一边读取数据一边训练模型,GPU使用率非常低,训练的时间会很久。经过摸索,发现增加swap空间是可行的。swap交换空间只有在内存用尽的时候才会被使用到。虽然swap使用的是硬盘来代替内存空间,速度会慢非常多,但是只要数据能够加载到内存之中,多一点点数据在sw
原创
发布博客 2021.10.30 ·
124 阅读 ·
1 点赞 ·
2 评论

又到10·24

又是一年1024,今年没啥好总结的,就总结一下平时工作学习用到的一些小技巧吧:1) 预则立。凡事动手之前都应该先思考一下计划,等到计划周全之后再去做,一般就会顺利很多。2) 做好记录。在做的过程中详细的记录所有的结果。各种参数,各种设置,各种尝试,一定要详尽记录。3) 及时总结。每个小阶段都需要及时总结,找到目前的问题,难点,困难等。4) 不要懒惰。懒惰是第一大杀手。...
原创
发布博客 2021.10.24 ·
72 阅读 ·
0 点赞 ·
0 评论

利用TF dataset改善模型训练效率的最佳实践

不好的实践已经提前把数据全部保存为tfrecord, 以便提升模型训练的时候的效率,数据集大小大概为4G左右。使用如下数据集构建流程:def load_tfrecord_dataset(tfrecord_name, batch_size, shuffle=True, buffer_size=1024): """load dataset from tfrecord""" raw_dataset = tf.data.TFRecordData
原创
发布博客 2021.10.14 ·
145 阅读 ·
0 点赞 ·
1 评论

tf.data.Dataset 不要和random包混用

自从Tensorflow1.4发布之后,Datasets就成为了新的给Tensorflow模型创建input pipelines的方法。DDataset 有如下模式:从你的数据创建数据集在数据上进行一些预处理迭代每一个数据迭代是按照流这种模式进行的,所以整个数据集是不需要一次性加载到内存。一个典型的dataset构建过程:def ListFiles(basedir,ext): list_ds = tf.data.Dataset.list_files(basedir+"/*."+e.
原创
发布博客 2021.10.09 ·
90 阅读 ·
0 点赞 ·
3 评论

Hill-climbing 算法python 实现

Hill-climbing 其实也不是很复杂,在这个博文里面,我假定一个512维度的空间中存在一个点point1 ,我的目标是随机初始化一个点,通过Hill-climbing找到这个目标点point1。 站在当前点,通过探索所有可能的走法去判断下一步哪一个走法是能够朝着目标靠近的。过程其实也不复杂,在512里面的某一个维度,走起来只有两种选择,加一个步长或者减去一个步长。如果下一步找不到比较好的选择,都不能靠近目标点,那么算法结束。具体代码可以看下面:
原创
发布博客 2021.09.22 ·
139 阅读 ·
0 点赞 ·
0 评论

人脸识别App面临的安全风险

(一)网络和数据安全保障机制欠缺易造成人脸数据泄漏当前关于人脸识别技术的安全技术标准和使用规范不够完善,对于人脸数据控制者的责任和义务,人脸数据主体的权利以及人脸数据在收集、存储、处理等各环节应采取的安全措施缺少相关规定。因此,人脸识别技术的大部分开发企业和应用服务提供商已采取的安全措施可能难以应对人脸识别技术面临的安全威胁,容易发生人脸数据泄露等安全事件。除此之外,网络安全生态环境持续恶化,系统的安全漏洞几乎不可避免,因此人脸数据库泄漏事件也屡见不鲜。更为可怕的是,由于生物识别信息是唯一的,是不可再生的
转载
发布博客 2021.09.20 ·
1539 阅读 ·
0 点赞 ·
1 评论

fuzzy extractor 模糊提取器的代码解读和实现

模糊提取器 的原理可以参看博客文章:https://blog.csdn.net/MrCharles/article/details/108734526密码机制中的秘密值通常是随机串,要求是均匀分布,而且需要时可以 精确再生。而在现实世界中秘密值很难满足这一点,例如,对于类似指纹等的生物特征,并不是均匀分布的随机值,而且每次需要时,也无法精确的再现(指纹都存在一定误差)。用户进行认证最常见的方式是基于Password,短的Password用户容易记忆,但是熵值很低,安全性差;而一些长的密码短语,用户不容易记
原创
发布博客 2021.08.23 ·
423 阅读 ·
0 点赞 ·
7 评论

深圳来电/Call From SZ/(2)

不知不觉已经年过三十了,要不是家人提醒,都没有想起来生日已经错过。突然那一霎那,感觉没有任何人有关心关注过自己,除了父母,还有谁担心我的生活呢?这种莫名的寂寞感就跃然心头,鼻头有一丝丝酸酸的感觉。有时候也想,人生实在是太过于无趣了,感觉不到乐趣所在。人生在世,不如意者十有八九,总是要学会妥协,学会和自己和解,和世界和解。那又能如何呢?实在是提不起精神,犯懒,什么都不想做。这便是深圳来电第二篇吧。我这持续不断的积极乐观人生终究也有消极的时刻。...
原创
发布博客 2021.08.05 ·
117 阅读 ·
1 点赞 ·
2 评论

为什么OpenCV使用BGR而不是RGB?

https://learnopencv.com/why-does-opencv-use-bgr-color-format/Satya Mallick早期的开发者选择了BGR,为啥选择BGR呢?那时候流行的相机制造商和软件商都是用这个模式,例如微软使用的是BGR,微软的软件里面COLORREF的值的格式为0x00bbggrr。所以从那时候起,opencv就一直使用BGR。现在我们也还是使用BGR,这种反人类的设计,只能去习惯它(当然,早期它并不绝对反人类)。“Why not use RGB when e
原创
发布博客 2021.07.09 ·
221 阅读 ·
2 点赞 ·
1 评论
加载更多