十分钟搭建一个EFK集群

二进制部署

ELK 介绍

ELK 是三个开源软件的缩写,提供一套完整的企业级日志平台解决方案。
分别是:

  • Elasticsearch:搜索、分析和存储数据。
  • Logstash :采集日志、格式化、过滤,最后将数据推送到Elasticsearch存储
  • Kibana:数据可视化。
  • Beats :集合了多种单一用途数据采集器,用于实现从边缘机器向 Logstash 和
    Elasticsearch 发送数据。里面应用最多的是Filebeat,是一个轻量级日志采集器,将采集的数据推送到Logstash、ES存储。
-l: 让shell成为登录shell,用 runuser -l PAM 文件替代默认的
-g:指定主要的组
-G 追加组
-c:命令,要传到shell的单个命令
--session-command=COMMAND:使用-c传递单个命令道shell中并且不创建新的会话
-m: 不重置环境变量

一,准备环境

环境信息:

主机名操作系统版本IP地址
masterCentos7192.168.30.133
node1Centos7192.168.30.134
node2Centos7192.168.30.135

架构:
在这里插入图片描述

系统初始化:

#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
#关闭selinux
sed -i ‘s/enforcing/disabled/’ /etc/selinux/config # 永久
setenforce 0 # 临时
#根据规划设置主机名
hostnamectl set-hostname
#添加hosts
cat >> /etc/hosts << EOF
192.168.30.133 elk1
192.168.30.134 elk2
192.168.30.135 elk3
EOF
# 创建用户
groupadd elk
useradd elk -g elk
# 创建数据及⽇志⽂件并授权
mkdir -pv /data/elk/{data,logs}
chown -R elk:elk /data/elk/

启动先决条件:
调整进程最大打开文件数数量

#临时设置
ulimit -n 65535
#永久设置,重启生效
vi /etc/security/limits.conf
* hard nofile 65535
* soft nofile 65535
#验证
ulimit -n

调整进程最大虚拟内存区域数量

#临时设置
sysctl -w vm.max_map_count=262144
#永久设置
echo "vm.max_map_count=262144" >> /etc/sysctl.conf
sysctl -p

二,Elasticsearch安装

2.1 下载部署elasticsearch

2.1.1 下载安装

https://www.elastic.co/cn/downloads/elasticsearch

在这里插入图片描述

cd /opt/
#解压到当前⽬录
tar -xf elasticsearch-7.9.3-linux-x86_64.tar.gz -C .
mv elasticsearch-7.9.3-linux-x86_64 elasticsearch

#创建用户、授权
chown -R elk.elk elasticsearch

2.1.2 更改配置文件
更改elk1的配置文件:

vim elasticsearch/config/elasticsearch.yml
#必改配置
cluster.name: elk-cluster # 集群名称
node.name: elk1 # 集群节点名称
network.host: 0.0.0.0 # 监听地址
discovery.seed_hosts: [“192.168.30.133”, “192.168.31.62”,“192.30.134”] # 集群节点列表
cluster.initial_master_nodes: [“elk1”] # 首次启动指定的Master节点
#可选配置
node.master: true 
node.data: true
path.data: /data/elk/data # 数据目录
path.logs: /date/elk/logs # 日志目录
bootstrap.memory_lock: false # 锁内存,尽量不使⽤交换内存
http.port: 9200 # 监听端口
#transport.tcp.port: 9300 #默认内部节点之间通信端口

更改elk2的配置文件:

vim elasticsearch/config/elasticsearch.yml

cluster.name: elk-cluster # 集群名称
node.name: elk2 # 集群节点名称
path.data: /data/elk/data # 数据目录
path.logs: /date/elk/logs # 日志目录
bootstrap.memory_lock: false # 锁内存,尽量不使⽤交换内存
network.host: 0.0.0.0 # 监听地址
http.port: 9200 # 监听端口
#transport.tcp.port: 9300 #内部节点之间通信端口
discovery.seed_hosts: [“192.168.30.133”, “192.168.31.62”,“192.30.134”] # 集群节点列表

配置文件说明:
在节点2或节点3不启用cluster.initial_master_nodes参数,注释掉
cluster.name: 集群名称,唯一确定一个集群。
node.name:节点名称,一个集群中的节点名称是唯一固定的,不同节点不能同名。
node.master: 主节点属性值
node.data: 数据节点属性值
network.host: 本节点的ip
http.port: 本节点的http端口
transport.port:9300 集群之间通信的端口,若不指定默认:9300
discovery.seed_hosts:节点发现需要配置一些种子节点,与7.X之前老版本:disvoery.zen.ping.unicast.hosts类似,一般配置集群中的全部节点
cluster.initial_master_nodes:指定集群初次选举中用到的具有主节点资格的节点,称为集群引导,只在第一次形成集群时需要。
path.data: 数据存放路径
path.logs: 日志存放路径
node.master:true 表示该节点是否可以被选举为主节点(master node)
node.data:true 表示该节点是否可以存储数据
jvm.option的设置(使用elastic用户)

#实际生产环境中计算公式:min(机器内存的一半,32GB内存)。也就是说:取机器环境内存的一半和32GB内存之间的小值。
vim /opt/elasticsearch/config/jvm.options
-Xms1g
-Xmx1g

2.1.3 启动elasticsearch

#控制台启动
./bin/elasticsearch
#后台启动
./bin/elasticsearch -d

#设置systemctl启动(Prod)

[Unit]
Description=Elasticsearch Server
After=network.target
[Service]
Type=forking
#Environment=JAVA_HOME=/data/soft/jdk1.8.0_191ExecStart=/opt/elasticsearch/bin/elasticsearch -p /tmp/elasticsearch.pid -d
ExecStop=kill -SIGTERM cat /tmp/elasticsearch.pid
Restart=always
User=es
Group=es
StandardOutput=journal
StandardError=inherit
LimitNOFILE=65536
LimitNPROC=4096
LimitAS=infinity
LimitFSIZE=infinity
TimeoutStopSec=0
KillSignal=SIGTERM
KillMode=process
SendSIGKILL=no
SuccessExitStatus=143
[Install]
WantedBy=multi-user.target

2.1.4 访问验证

curl http://172.18.2.35:920
查看es健康状态: curl http://172.18.2.35:9200/_cat/health
查看集群节点:curl -XGET 'http://127.0.0.1:9200/_cat/nodes?pretty'
查询集群状态: curl -i -XGET http://127.0.0.1:9200/_cluster/health?pretty
  • green:集群所有数据都处于正常状态
  • yellow:集群所有数据都可以访问,但一些数据的副本还没有分配
  • red:集群部分数据不可访问

在这里插入图片描述

2.2 安装图形页面管理ES

图形管理界面推荐:ElasticHD 、cerebro。

下载安装ElasticHD:

wget https://github.com/qax-os/ElasticHD/releases/download/1.4/elasticHD_linux_amd64.zip
unzip elasticHD_linux_amd64.zip
 nohup ./ElasticHD &
#访问:
http://192.168.67.154:9800

在这里插入图片描述

三,Kibana 安装

安装在es1上,二进制部署kibana。

cd /opt/elk 
tar zxvf kibana-7.9.3-linux-x86_64.tar.gz 
mv kibana-7.9.3-linux-x86_64 kibana 
#修改配置文件
server.port: 5601
server.host: "0.0.0.0"
elasticsearch.hosts: ["http://192.168.30.136:9200","http://192.168.30.137:9200","http://192.168.30.138:9200"]
i18n.locale: "zh-CN"

配置系统服务管理

vim kibana.service

[Unit] 
Description=kibana 
[Service] 
#User=es
#Group=es
ExecStart=/opt/elk/kibana/bin/kibana --allow-root 
ExecReload=/bin/kill -HUP $MAINPID 
KillMode=process 
Restart=on-failure 
[Install] 
WantedBy=multi-user.target 

访问:
http://192.168.30.136:5601

四,filebeat安装使用

3.1下载安装。

 curl ‐L ‐O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat‐7.13.2‐linux‐ x86_64.tar.gz 
 tar xzvf filebeat‐7.13.2‐linux‐x86_64.tar.gz ‐C /usr/local/ 
 mv /usr/local/filebeat‐7.13.2‐linux‐x86_64 /usr/local/filebeat

3.1 修改 Filebeat配置文件。
(1),配置文件
该配置⽂件的所有者必须是root或正在执⾏Beat进程的⽤户。 该⽂件的权限
必须不允许除所有者以外的任何⼈写⼊,需要是0644的权限

vim /usr/local/filebeat
filebeat.prospectors:
- input_type: log
 paths:
 - /var/log/nginx/*.log
 tags: ["nginx"]
 
 output.elasticsearch:
  hosts: ["192.168.30.136:9200","192.168.30.137:9200"]
  • 配置等级,输出到kibana
    当filebeat和kibana在一台机器上时候可不用配置。
fields:
    level: info
    review: 1

setup.kibana:
host: "192.168.30.136:5601"

路径的最后不能⽤ * 代替所有,必须有⼀个相对的匹配或者绝对的匹配。
/var/log/* 这样的匹配是错误的

(2) 检测配置文件:

./filebeat/filebeat test config -c filebeat/filebeat.yml

3.3 Filebeat启动管理
(1)前台运行 采用前台运行的方式查看Filebeat获取的日志结果

nohup /usr/local/filebeat/filebeat -e -c /usr/local/filebeat/kafka.yml >/dev/null 2>&1 &

(2)后台运行
使用nohup方式启动Filebeat到后台,日志结果可查看nohup.out文件
使用systemd管理的后台方式启动Filebeat进程不能查看输出日志,测试阶段勿用 配置systemd方式的Filebeat启动管理文件

vim /usr/lib/systemd/system/filebeat.service
[Unit] 
Description=Filebeat sends log files to Logstash or directly to Elasticsearch.
 Wants=network‐online.target
After=network‐online.target
[Service] 
ExecStart=/usr/local/filebeat/filebeat ‐c /usr/local/filebeat/filebeat.yml Restart=always 
[Install]
WantedBy=multi‐user.target
1. 给脚本赋权
   chmod +x /lib/systemd/system/elasticsearch.service
2. 设置开机启动
   #重新加载systemd的守护线程:
   systemctl daemon-reload
   systemctl enable elasticsearch

五,nginx安装

需要抓取nginx的日志,nginx和filebeat安装在同一台es1机器上。
yum -y install nginx

六,访问elasticsearch出现yellow

curl http://172.18.2.35:9200/_cat/health

1679992708 08:38:28 elasticsearch yellow 1 1 806 806 0 0 1 0 - 99.9%

curl http://172.18.2.35:9200/_cluster/health?pretty

{
  "cluster_name" : "elasticsearch",
  "status" : "yellow",
  "timed_out" : false,
  "number_of_nodes" : 1,
  "number_of_data_nodes" : 1,
  "active_primary_shards" : 806,
  "active_shards" : 806,
  "relocating_shards" : 0,
  "initializing_shards" : 0,
  "unassigned_shards" : 1,
  "delayed_unassigned_shards" : 0,
  "number_of_pending_tasks" : 0,
  "number_of_in_flight_fetch" : 0,
  "task_max_waiting_in_queue_millis" : 0,
  "active_shards_percent_as_number" : 99.87608426270135
}

“unassigned_shards” : 1, 分片数为1,设置为0

curl -X PUT "172.18.2.35:9200/_settings" -H 'Content-Type: application/json' -d'{"number_of_replicas":0}'

查看elasticsearch的状态已经变成green了。

curl http://172.18.2.35:9200/_cluster/health?pretty
curl http://172.18.2.35:9200/_cat/health
filebeat后台启动
nohup /usr/local/filebeat/filebeat -e -c /usr/local/filebeat/kafka.yml >/dev/null 2>&1 &

logstash 后台启动
nohup /usr/local/logstash/bin/logstash -f /usr/local/logstash/bin/k_es.conf -w 8 -b 1000 > /dev/null 2>&1 &

kafka 后台启动
nohup /usr/local/kafka/bin/kafka-server-start.sh /usr/local/kafka/config/server.properties > /dev/null 2>&1 &

KafkaStreamsLog 后台启动
nohup /usr/local/jdk/bin/java -Xms128m -Xmx512m -jar /usr/local/KafkaStreams/KafkaStreamsLog.jar > /dev/null 2>&1 &
微服务是什么?微服务是用于构建应用程序的架构风格,一个大的系统可由一个或者多个微服务组成,微服务架构可将应用拆分成多个核心功能,每个功能都被称为一项服务,可以单独构建和部署,这意味着各项服务在工作和出现故障的时候不会相互影响。为什么要用微服务?单体架构下的所有代码模块都耦合在一起,代码量大,维护困难,想要更新一个模块的代码,也可能会影响其他模块,不能很好的定制化代码。微服务中可以有java编写、有Python编写的,他们都是靠restful架构风格统一成一个系统的,所以微服务本身与具体技术无关、扩展性强。大型电商平台微服务功能图为什么要将SpringCloud项目部署到k8s平台?SpringCloud只能用在SpringBoot的java环境中,而kubernetes可以适用于任何开发语言,只要能被放进docker的应用,都可以在kubernetes上运行,而且更轻量,更简单。SpringCloud很多功能都跟kubernetes重合,比如服务发现,负载均衡,配置管理,所以如果把SpringCloud部署到k8s,那么很多功能可以直接使用k8s原生的,减少复杂度。Kubernetes作为成熟的容器编排工具,在国内外很多公司、世界500强等企业已经落地使用,很多中小型公司也开始把业务迁移到kubernetes中。kubernetes已经成为互联网行业急需的人才,很多企业都开始引进kubernetes技术人员,实现其内部的自动化容器云平台的建设。对于开发、测试、运维、架构师等技术人员来说k8s已经成为的一项重要的技能,下面列举了国内外在生产环境使用kubernetes的公司: 国内在用k8s的公司:阿里巴巴、百度、腾讯、京东、360、新浪、头条、知乎、华为、小米、富士康、移动、银行、电网、阿里云、青云、时速云、腾讯、优酷、抖音、快手、美团等国外在用k8s的公司:谷歌、IBM、丰田、iphone、微软、redhat等整个K8S体系涉及到的技术众多,包括存储、网络、安全、监控、日志、DevOps、微服务等,很多刚接触K8S的初学者,都会感到无从下手,为了能让大家系统地学习,克服这些技术难点,推出了这套K8S架构师课程。Kubernetes的发展前景 kubernetes作为炙手可热的技术,已经成为云计算领域获取高薪要掌握的重要技能,在招聘网站搜索k8s,薪资水平也非常可观,为了让大家能够了解k8s目前的薪资分布情况,下面列举一些K8S的招聘截图: 讲师介绍:  先超容器云架构师、IT技术架构师、DevOps工程师,曾就职于世界500强上市公司,拥有多年一线运维经验,主导过上亿流量的pv项目的架构设计和运维工作;具有丰富的在线教育经验,对课程一直在改进和提高、不断的更新和完善、开发更多的企业实战项目。所教学员遍布京东、阿里、百度、电网等大型企业和上市公司。课程学习计划 学习方式:视频录播+视频回放+全套源码笔记 教学服务:模拟面试、就业指导、岗位内推、一对一答疑、远程指导 VIP终身服务:一次购买,终身学习课程亮点:1. 学习方式灵活,不占用工作时间:可在电脑、手机观看,随时可以学习,不占用上班时间2.老师答疑及时:老师24小时在线答疑3. 知识点覆盖全、课程质量高4. 精益求精、不断改进根据学员要求、随时更新课程内容5. 适合范围广,不管你是0基础,还是拥有工作经验均可学习:0基础1-3年工作经验3-5年工作经验5年以上工作经验运维、开发、测试、产品、前端、架构师其他行业转行做技术人员均可学习课程部分项目截图   课程大纲 k8s+SpringCloud全栈技术:基于世界500强的企业实战课程-大纲第一章 开班仪式老师自我介绍、课程大纲介绍、行业背景、发展趋势、市场行情、课程优势、薪资水平、给大家的职业规划、课程学习计划、岗位内推第二章 kubernetes介绍Kubernetes简介kubernetes起源和发展kubernetes优点kubernetes功能kubernetes应用领域:在大数据、5G、区块链、DevOps、AI等领域的应用第三章  kubernetes中的资源对象最小调度单元Pod标签Label和标签选择器控制器Replicaset、Deployment、Statefulset、Daemonset等四层负载均衡器Service第四章 kubernetes架构和组件熟悉谷歌的Borg架构kubernetes单master节点架构kubernetes多master节点高可用架构kubernetes多层架构设计原理kubernetes API介绍master(控制)节点组件:apiserver、scheduler、controller-manager、etcdnode(工作)节点组件:kube-proxy、coredns、calico附加组件:prometheus、dashboard、metrics-server、efk、HPA、VPA、Descheduler、Flannel、cAdvisor、Ingress     Controller。第五章 部署多master节点的K8S高可用集群(kubeadm)第六章 带你体验kubernetes可视化界面dashboard在kubernetes中部署dashboard通过token令牌登陆dashboard通过kubeconfig登陆dashboard限制dashboard的用户权限在dashboard界面部署Web服务在dashboard界面部署redis服务第七章 资源清单YAML文件编写技巧编写YAML文件常用字段,YAML文件编写技巧,kubectl explain查看帮助命令,手把手教你创建一个Pod的YAML文件第八章 通过资源清单YAML文件部署tomcat站点编写tomcat的资源清单YAML文件、创建service发布应用、通过HTTP、HTTPS访问tomcat第九章  kubernetes Ingress发布服务Ingress和Ingress Controller概述Ingress和Servcie关系安装Nginx Ingress Controller安装Traefik Ingress Controller使用Ingress发布k8s服务Ingress代理HTTP/HTTPS服务Ingress实现应用的灰度发布-可按百分比、按流量分发第十章 私有镜像仓库Harbor安装和配置Harbor简介安装HarborHarbor UI界面使用上传镜像到Harbor仓库从Harbor仓库下载镜像第十一章 微服务概述什么是微服务?为什么要用微服务?微服务的特性什么样的项目适合微服务?使用微服务需要考虑的问题常见的微服务框架常见的微服务框架对比分析第十二章 SpringCloud概述SpringCloud是什么?SpringCloud和SpringBoot什么关系?SpringCloud微服务框架的优缺点SpringCloud项目部署到k8s的流程第十三章 SpringCloud组件介绍服务注册与发现组件Eureka客户端负载均衡组件Ribbon服务网关Zuul熔断器HystrixAPI网关SpringCloud Gateway配置中心SpringCloud Config第十四章 将SpringCloud项目部署到k8s平台的注意事项如何进行服务发现?如何进行配置管理?如何进行负载均衡?如何对外发布服务?k8s部署SpringCloud项目的整体流程第十五章 部署MySQL数据库MySQL简介MySQL特点安装部署MySQL在MySQL数据库导入数据对MySQL数据库授权第十六章 将SpringCLoud项目部署到k8s平台SpringCloud的微服务电商框架安装openjdk和maven修改源代码、更改数据库连接地址通过Maven编译、构建、打包源代码在k8s中部署Eureka组件在k8s中部署Gateway组件在k8s中部署前端服务在k8s中部署订单服务在k8s中部署产品服务在k8s中部署库存服务第十七章 微服务的扩容和缩容第十八章 微服务的全链路监控什么是全链路监控?为什么要进行全链路监控?全链路监控能解决哪些问题?常见的全链路监控工具:zipkin、skywalking、pinpoint全链路监控工具对比分析第十九章 部署pinpoint服务部署pinpoint部署pinpoint agent在k8s中重新部署带pinpoint agent的产品服务在k8s中重新部署带pinpoint agent的订单服务在k8s中重新部署带pinpoint agent的库存服务在k8s中重新部署带pinpoint agent的前端服务在k8s中重新部署带pinpoint agent的网关和eureka服务Pinpoint UI界面使用第二十章 基于Jenkins+k8s+harbor等构建企业级DevOps平台第二十一章 基于Promethues+Alert+Grafana搭建企业级监控系统第二十二章 部署智能化日志收集系统EFK 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值