1.问题描述
给定字符串S和T,求S中T的子串个数,T的子串为删除T的任意元素构成的新串
2.解题思路
DP问题,最优子结构dp[i][j]为S[0...i-1]中T[0...j-1]的子串数量
若S.charAt(i-1)!=T.charAt(j-1)说明两个串的最后一个元素不相同,dp[i][j]=dp[i-1][j](S中T的子串数量与S的最后一个元素无关)
若S.charAt(i-1)==T.charAt(j-1)说明两个串的最后一个元素相同,即S中的最后一个元素可以作为T的某个子串组成dp[i][j]=dp[i-1][j-1]或者S中的最后一个元素不作为T的某个子串组成dp[i][j]=dp[i-1][j]
3.程序源码
public int numDistinct(String S, String T) {
int[][] dp = new int[S.length()+1][T.length()+1];
for (int j = 0; j <= T.length(); j++) { //两个边界条件不要写反了!!!!
dp[0][j] = 0;
}
for (int i = 0; i <= S.length(); i++) { //两个边界条件不要写反了!!!!
dp[i][0] = 1;
}
for (int i = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
if(S.charAt(i-1) == T.charAt(j-1)) {
dp[i][j] = dp[i-1][j] + dp[i-1][j-1];
} else {
dp[i][j] = dp[i-1][j];
}
}
}
return dp[S.length()][T.length()];
}
给定字符串S和T,求S中T的子串个数,T的子串为删除T的任意元素构成的新串
2.解题思路
DP问题,最优子结构dp[i][j]为S[0...i-1]中T[0...j-1]的子串数量
若S.charAt(i-1)!=T.charAt(j-1)说明两个串的最后一个元素不相同,dp[i][j]=dp[i-1][j](S中T的子串数量与S的最后一个元素无关)
若S.charAt(i-1)==T.charAt(j-1)说明两个串的最后一个元素相同,即S中的最后一个元素可以作为T的某个子串组成dp[i][j]=dp[i-1][j-1]或者S中的最后一个元素不作为T的某个子串组成dp[i][j]=dp[i-1][j]
3.程序源码
public int numDistinct(String S, String T) {
int[][] dp = new int[S.length()+1][T.length()+1];
for (int j = 0; j <= T.length(); j++) { //两个边界条件不要写反了!!!!
dp[0][j] = 0;
}
for (int i = 0; i <= S.length(); i++) { //两个边界条件不要写反了!!!!
dp[i][0] = 1;
}
for (int i = 1; i <= S.length(); i++) {
for (int j = 1; j <= T.length(); j++) {
if(S.charAt(i-1) == T.charAt(j-1)) {
dp[i][j] = dp[i-1][j] + dp[i-1][j-1];
} else {
dp[i][j] = dp[i-1][j];
}
}
}
return dp[S.length()][T.length()];
}