Leetcode 1376. Time Needed to Inform All Employees

[Med] LeetCode 1376. Time Needed to Inform All Employees

链接:https://leetcode.com/problems/time-needed-to-inform-all-employees/

题目描述
A company has n employees with a unique ID for each employee from 0 to n - 1. The head of the company has is the one with headID.
Each employee has one direct manager given in the manager array where manager[i] is the direct manager of the i-th employee, manager[headID] = -1. Also it’s guaranteed that the subordination relationships have a tree structure.
The head of the company wants to inform all the employees of the company of an urgent piece of news. He will inform his direct subordinates and they will inform their subordinates and so on until all employees know about the urgent news.
The i-th employee needs informTime[i] minutes to inform all of his direct subordinates (i.e After informTime[i] minutes, all his direct subordinates can start spreading the news).
Return the number of minutes needed to inform all the employees about the urgent news.

公司里有 n 名员工,每个员工的 ID 都是独一无二的,编号从 0 到 n - 1。公司的总负责人通过 headID 进行标识。
在 manager 数组中,每个员工都有一个直属负责人,其中 manager[i] 是第 i 名员工的直属负责人。对于总负责人,manager[headID] = -1。题目保证从属关系可以用树结构显示。
公司总负责人想要向公司所有员工通告一条紧急消息。他将会首先通知他的直属下属们,然后由这些下属通知他们的下属,直到所有的员工都得知这条紧急消息。
第 i 名员工需要 informTime[i] 分钟来通知它的所有直属下属(也就是说在 informTime[i] 分钟后,他的所有直属下属都可以开始传播这一消息)。
返回通知所有员工这一紧急消息所需要的 分钟数 。

Example 1:

Input: n = 1, headID = 0, manager = [-1], informTime = [0]
Output: 0
Explanation: The head of the company is the only employee in the company.

Example 2:

在这里插入图片描述
Input: n = 6, headID = 2, manager = [2,2,-1,2,2,2], informTime = [0,0,1,0,0,0]
Output: 1
Explanation: The head of the company with id = 2 is the direct manager of all the employees in the company and needs 1 minute to inform them all.
The tree structure of the employees in the company is shown.

Example 3:

在这里插入图片描述
Input: n = 7, headID = 6, manager = [1,2,3,4,5,6,-1], informTime = [0,6,5,4,3,2,1]
Output: 21
Explanation: The head has id = 6. He will inform employee with id = 5 in 1 minute.
The employee with id = 5 will inform the employee with id = 4 in 2 minutes.
The employee with id = 4 will inform the employee with id = 3 in 3 minutes.
The employee with id = 3 will inform the employee with id = 2 in 4 minutes.
The employee with id = 2 will inform the employee with id = 1 in 5 minutes.
The employee with id = 1 will inform the employee with id = 0 in 6 minutes.
Needed time = 1 + 2 + 3 + 4 + 5 + 6 = 21.

Example 4:

Input: n = 15, headID = 0, manager = [-1,0,0,1,1,2,2,3,3,4,4,5,5,6,6], informTime = [1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
Output: 3
Explanation: The first minute the head will inform employees 1 and 2.
The second minute they will inform employees 3, 4, 5 and 6.
The third minute they will inform the rest of employees.

Example 5:

Input: n = 4, headID = 2, manager = [3,3,-1,2], informTime = [0,0,162,914]
Output: 1076

Constraints:

  • 1 <= n <= 10^5
  • 0 <= headID < n
  • manager.length == n
  • 0 <= manager[i] < n
  • manager[headID] == -1
  • informTime.length == n
  • 0 <= informTime[i] <= 1000
  • informTime[i] == 0 if employee i has no subordinates.
  • It is guaranteed that all the employees can be informed.

Tag: 多叉树
解题思路
和道题看起来很长很复杂,实际上是一道很直接的题目。题目当中给出了一个manager array和一个informTime array.每一个员工有一个自己的manager, 同时这个员工也可能是别的员工的manager。一个manager可以管理多个员工,一个员工只有一个自己的manager。题目问,如果一个消息从headID开始向下属通知,最多过多长时间所有的员工都会知道。这个题目实际上可以抽象成一棵多叉树,最顶端的根节点是最开始给出来的headID. 每一条边都有一个权重也就是informTime代表的值。一个manager 节点到其所有的子节点的informTime都是一样的。所以这道题就变成了,找到多叉树当中,从根节点出发到叶子节点的路径,权重和的最大值是多少。

首先第一种bfs的办法来做,我先用了一个Map managerToEmployee 储存每个manager和其手下员工的映射关系。然后使用level order思想,每一次将manager-employee这条权重带入下一个层级运算,然后每一次都更新一个较大的值赋予globalMax,代表了从root到这一个Leaf的权重和。最后返回globalMax的值。

Space & Time = O(N)

解法一:

class Solution {
    int globalMax = 0;
    Map<Integer, List<Integer>> managerToEmployee;
    public int numOfMinutes(int n, int headID, int[] manager, int[] informTime) {
        managerToEmployee = new HashMap<>();

        for(int employeeID=0; employeeID<manager.length; employeeID++){
            int managerID = manager[employeeID];
            if(!managerToEmployee.containsKey(managerID)) managerToEmployee.put(managerID, new ArrayList());
            managerToEmployee.get(managerID).add(employeeID);
        }
        
        levelOrderTraverse(headID, manager, informTime, 0);
        return globalMax;
    }
    
    public void levelOrderTraverse(int headID, int[] manager, int[] informTime, int totalTime){
        if(managerToEmployee.get(headID) == null){
            globalMax = Math.max(globalMax, totalTime);
            return;
        }
        List<Integer> employeeList = managerToEmployee.get(headID);
        for(int employee: employeeList){
        	//第二个参数,当前的employee就是下一层的manager
            levelOrderTraverse( employee, manager, informTime, totalTime+informTime[headID]);
        }
    }
}

解法二:
这是网友写的BFS的办法,更加简洁一些

class Solution {
    public int numOfMinutes(int n, int headID, int[] manager, int[] informTime) {
        List<Integer>[] managerToEmployee = new List[n];
        for (int i = 0; i < n; i++) managerToEmployee[i] = new ArrayList<>();
        for (int i = 0; i < n; i++) if (manager[i] != -1) managerToEmployee[manager[i]].add(i);
        Queue<int[]> q = new LinkedList<>(); // Since it's a tree, we don't need `visited` array
        q.offer(new int[]{headID, 0});
        int res = 0;
        while (!q.isEmpty()) {
            int[] top = q.poll();
            int managerID = top[0], weight = top[1];
            res = Math.max(weight, res);
            
            for (int employee : managerToEmployee[managerID]) q.offer(new int[]{employee, weight + informTime[managerID]});
        }
        return res;
    }
}

解法三:
还有一种dfs的办法, 是bottom-up的一个遍历,每一个manager向上返回一个从leaf node到他自己最大的path sum。这个最大path sum就是所需最长的通知时间

class Solution {
    public int numOfMinutes(int n, int headID, int[] manager, int[] informTime) {
        List<Integer>[] managerToEmployee = new List[n];
        for (int i = 0; i < n; i++) managerToEmployee[i] = new ArrayList<>();
        for (int i = 0; i < n; i++) if (manager[i] != -1) managerToEmployee[manager[i]].add(i);
        return dfs(managerToEmployee, headID, informTime);
    }
    private int dfs(List<Integer>[] managerToEmployee, int managerID, int[] informTime) {
        int max = 0;
        for (int employee : managerToEmployee[managerID])
            max = Math.max(max, dfs(managerToEmployee, employee, informTime));
        return max + informTime[managerID];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值