假设有n(n<=20)个任务由k(k<=20)个可并行工作的机器完成。完成任务i需要的时间为ti。 试设计一个算法,对任意给定的整数n和k,以及完成任务i 需要的时间为ti ,i=1~n。计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。
输入格式:
输入数据的第一行有2 个正整数n和k。第2 行的n个正整数是完成n个任务需要的时间。
输出格式:
将计算出的完成全部任务的最早时间输出到屏幕。
输入样例:
在这里给出一组输入。例如:
7 3
2 14 4 16 6 5 3
输出样例:
在这里给出相应的输出。例如:
17
#include<bits/stdc++.h>
using namespace std;
int n, k;
int task_time[1001];
int min_t;
int machine[1001];
int max(int a, int b) {
return a > b ? a : b;
}
int min(int a, int b) {
return a < b ? a : b;
}
void backTrack(int t) {
if (t == n) {
int now_max_time = 0;
for (int i = 0;i < k;i++) {
now_max_time = max(now_max_time, machine[i]);
}
min_t = min(min_t, now_max_time);
}
else
{
for (int i = 0;i < k;i++) {
//由第i台机器完成第t项任务
machine[i] += task_time[t];
//判断是否已经大于了现有的最少时间
if (machine[i] < min_t) {
backTrack(t + 1);
}
//i机器不完成第t项任务
machine[i] -= task_time[t];
}
}
}
int main()
{
cin >> n >> k;
for (int i = 0;i < n;i++) {
cin >> task_time[i];
min_t += task_time[i];
}
backTrack(0);
cout << min_t<<endl;
return 0;
}