最佳调度问题

假设有n(n<=20)个任务由k(k<=20)个可并行工作的机器完成。完成任务i需要的时间为ti。 试设计一个算法,对任意给定的整数n和k,以及完成任务i 需要的时间为ti ,i=1~n。计算完成这n个任务的最佳调度,使得完成全部任务的时间最早。

输入格式:
输入数据的第一行有2 个正整数n和k。第2 行的n个正整数是完成n个任务需要的时间。

输出格式:
将计算出的完成全部任务的最早时间输出到屏幕。

输入样例:
在这里给出一组输入。例如:

7 3
2 14 4 16 6 5 3
输出样例:
在这里给出相应的输出。例如:

17

#include<bits/stdc++.h>
using namespace std;

int n, k;
int task_time[1001];
int min_t;
int machine[1001];
int max(int a, int b) {
    return a > b ?  a : b;
}
int min(int a, int b) {
    return a < b ? a : b;
}
void backTrack(int t) {
    if (t == n) {
        int now_max_time = 0;
        for (int i = 0;i < k;i++) {
            now_max_time = max(now_max_time, machine[i]);
        }
        min_t = min(min_t, now_max_time);
    }
    else
    {
        for (int i = 0;i < k;i++) {
            //由第i台机器完成第t项任务
            machine[i] += task_time[t];
            //判断是否已经大于了现有的最少时间
            if (machine[i] < min_t) {
                backTrack(t + 1);
            }
            //i机器不完成第t项任务
            machine[i] -= task_time[t];
        }
    }
}
int main()
{
    cin >> n >> k;
    for (int i = 0;i < n;i++) {
        cin >> task_time[i];
        min_t += task_time[i];
    }
    backTrack(0);
    cout << min_t<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值