企业级 SpringBoot 教程 (二十四)springboot整合docker

这篇文篇介绍,怎么为 springboot程序构建一个docker镜像。docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app),更重要的是容器性能开销极低。

准备工作

环境:

  • linux环境或mac,不要用windows
  • jdk 8
  • maven 3.0
  • docker

对docker一无所知的看docker教程。

创建一个springboot工程

引入web的起步依赖,创建一个 Controler:

1

2

3

4

5

6

7

8

9

10

11

12

@SpringBootApplication

@RestController

public class SpringbootWithDockerApplication {

 

    @RequestMapping("/")

    public String home() {

        return "Hello Docker World";

    }

    public static void main(String[] args) {

        SpringApplication.run(SpringbootWithDockerApplication.class, args);

    }

}

  

将springboot工程容器化

Docker有一个简单的dockerfile文件作为指定镜像的图层。让我们先创建一个 dockerFile文件:

src/main/docker/Dockerfile:

1

2

3

4

5

6

FROM frolvlad/alpine-oraclejdk8:slim

VOLUME /tmp

ADD springboot-with-docker-0.0.1-SNAPSHOT.jar app.jar

RUN sh -c 'touch /app.jar'

ENV JAVA_OPTS=""

ENTRYPOINT [ "sh""-c""java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

  

我们通过maven 构建docker镜像。

在maven的pom目录,加上docker镜像构建的插件

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<properties>

   <docker.image.prefix>springio</docker.image.prefix>

</properties>

<build>

    <plugins>

        <plugin>

            <groupId>com.spotify</groupId>

            <artifactId>docker-maven-plugin</artifactId>

            <version>0.4.11</version>

            <configuration>

                <imageName>${docker.image.prefix}/${project.artifactId}</imageName>

                <dockerDirectory>src/main/docker</dockerDirectory>

                <resources>

                    <resource>

                        <targetPath>/</targetPath>

                        <directory>${project.build.directory}</directory>

                        <include>${project.build.finalName}.jar</include>

                    </resource>

                </resources>

            </configuration>

        </plugin>

    </plugins>

</build>

 

通过maven 命令:

第一步:mvn clean

第二步: mvn package docker:bulid ,如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Step 2/6 : VOLUME /tmp

—> Running in a98be3878053

—> 8286e98b54c5

Removing intermediate container a98be3878053

Step 3/6 : ADD springboot-with-docker-0.0.1-SNAPSHOT.jar app.jar

—> c6ce13e50bbd

Removing intermediate container a303a3058869

Step 4/6 : RUN sh -c ‘touch /app.jar’

—> Running in cf231afe700e

—> 9a0ec8936c00

Removing intermediate container cf231afe700e

Step 5/6 : ENV JAVA_OPTS “”

—> Running in e192597fc881

—> 2cb0d73bbdb0

Removing intermediate container e192597fc881

Step 6/6 : ENTRYPOINT sh -c java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar

—> Running in ab85f53fcdd8

—> 60fdb5c61692

Removing intermediate container ab85f53fcdd8

Successfully built 60fdb5c61692

[INFO] Built forezp/springboot-with-docker

[INFO] ————————————————————————

[INFO] BUILD SUCCESS

[INFO] ————————————————————————

[INFO] Total time: 01:45 min

[INFO] Finished at: 2017-04-19T05:37:44-07:00

[INFO] Final Memory: 19M/48M

[INFO] ————————————————————————

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值