方差分析(应用概率统计 陈魁 清华大学出版社)

一、单因素

设单因素 A A A a a a个水平 A 1 , A 2 , . . . , A a A_1,A_2,...,A_a A1,A2,...,Aa,在水平 A i ( i = 1 , 2 , . . . , a ) A_i(i=1,2,...,a) Ai(i=1,2,...,a)下,进行 n i ( n = ∑ i = 1 a n i ) n_i(n=\sum\limits_{i=1}^an_i) ni(n=i=1ani)次独立试验,得到试验指标的观测值,如下表所示:
1 2 ⋯ n A 1 x 11 x 12 ⋯ x 1 n 1 A 2 x 21 x 22 ⋯ x 2 n 2 ⋮ ⋮ ⋮ ⋯ ⋮ A i x i 1 x i 2 ⋯ x 1 n i ⋮ ⋮ ⋮ ⋯ ⋮ A a x a 1 x a 2 ⋯ x a n a \begin{array}{c|cccc} \hline & 1 & 2 & \cdots & n \\ \hline A_1 & x_{11} & x_{12} & \cdots & x_{1n_1} \\ A_2 & x_{21} & x_{22} & \cdots& x_{2n_2} \\ \vdots & \vdots & \vdots&\cdots&\vdots \\ A_i & x_{i1} & x_{i2} & \cdots & x_{1n_i} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ A_a & x_{a1} & x_{a2} & \cdots & x_{an_a} \\ \hline \end{array} A1A2AiAa1x11x21xi1xa12x12x22xi2xa2nx1n1x2n2x1nixana
假设在各个水平 A i ( i = 1 , 2 , ⋯   , a ) A_i(i=1,2,\cdots,a) Ai(i=1,2,,a)下的样本为 X i 1 , X i 2 , ⋯   , X i n i X_{i1},X_{i2},\cdots,X_{in_i} Xi1,Xi2,,Xini,它们来自具有相同方差 σ 2 \sigma^2 σ2、均值为 μ i \mu_i μi的正态总体 X i ∼ N ( μ i , σ 2 ) X_i\sim N(\mu_i,\sigma^2) XiN(μi,σ2),其中 μ i , σ 2 \mu_i,\sigma^2 μi,σ2均为未知,并且不同水平 A i A_i Ai下的样本之间相互独立。

x i ⋅ = ∑ j = 1 n i x i j ,      x ⋅ ⋅ = ∑ i = 1 a ∑ j = 1 n i x i j x_{i\cdot}=\sum\limits_{j=1}^{n_i}x_{ij},\ \ \ \ x_{\cdot\cdot}=\sum\limits_{i=1}^a\sum\limits_{j=1}^{n_i}x_{ij} xi=j=1nixij,    x=i=1aj=1nixij
S T = ∑ i = 1 a ∑ j = 1 n i x i j 2 − x ⋅ ⋅ 2 n S A = ∑ i = 1 a x i ⋅ 2 n i − x ⋅ ⋅ 2 n S E = S T − S A } \left. \begin{aligned} &S_T=\sum\limits_{i=1}^a\sum\limits_{j=1}^{n_i}x_{ij}^2-\frac{x_{\cdot\cdot}^2}{n} \\ &S_A=\sum\limits_{i=1}^a\frac{x_{i\cdot}^2}{n_i}-\frac{x_{\cdot\cdot}^2}{n} \\ &S_E=S_T-S_A \\ \end{aligned} \right\} ST=i=1aj=1nixij2nx2SA=i=1anixi2nx2SE=STSA
方差分析表

方差来源平方和自由度均方F比
因素 A A A S A S_A SA a − 1 a-1 a1 M S A = S A a − 1 MS_A=\frac{S_A}{a-1} MSA=a1SA F = M S A M S E F=\frac{MS_A}{MS_E} F=MSEMSA
误差 E E E S E S_E SE n − a n-a na M S E = S E n − a MS_E=\frac{S_E}{n-a} MSE=naSE
总和 T T T S A S_A SA n − 1 n-1 n1

判断:
(1)若 F > F α ( a − 1 , n − a ) F>F_\alpha(a-1,n-a) F>Fα(a1,na),则拒绝 H 0 H_0 H0,接受 H 1 H_1 H1,因素 A A A有显著影响。
(2)若 F < F α ( a − 1 , n − a ) F<F_\alpha(a-1,n-a) F<Fα(a1,na),则接受 H 0 H_0 H0,因素 A A A无显著影响。

二、双因素

  1. 无交互作用
    设两因素 A 、 B A、B AB A A A a a a个水平: A 1 , A 2 , ⋯   , A a A_1,A_2,\cdots,A_a A1,A2,,Aa B B B b b b个水平: B 1 , B 2 , ⋯   , B b B_1,B_2,\cdots,B_b B1,B2,,Bb,在每一个组合水平 ( A i , B j ) (A_i,B_j) (Ai,Bj)下,做一次试验(无重复试验)得出试验指标的观察值,如下表所示:
    因 素 B ( j ) 因 素 A ( i ) B 1 B 2 ⋯ B j ⋯ B b x i ⋅ A 1 x 11 x 12 ⋯ x 1 j ⋯ x 1 b x 1 ⋅ A 2 x 21 x 22 ⋯ x 2 j ⋯ x 2 b x 2 ⋅ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ A i x i 1 x i 2 ⋯ x i j ⋯ x i b x i ⋅ ⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ A a x a 1 x a 2 ⋯ x a j ⋯ x a b x a ⋅ x ⋅ j x ⋅ 1 x ⋅ 2 ⋯ x ⋅ j ⋯ x ⋅ b x ⋅ ⋅ \begin{array}{c|cccccc|c} \hline &因素B(j)\\因素A(i) & B_1 & B_2 & \cdots & B_j & \cdots & B_b & x_{i\cdot} \\ \hline A_1 & x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1b} & x_{1\cdot} \\ A_2 & x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2b} & x_{2\cdot} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ A_i & x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ib} & x_{i\cdot} \\ \vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ A_a & x_{a1} & x_{a2} & \cdots & x_{aj} & \cdots & x_{ab} & x_{a\cdot} \\ \hline x_{\cdot j} & x_{\cdot 1} & x_{\cdot 2} & \cdots & x_{\cdot j} & \cdots & x_{\cdot b} & x_{\cdot \cdot} \\ \hline \end{array} A(i)A1A2AiAaxjB(j)B1x11x21xi1xa1x1B2x12x22xi2xa2x2Bjx1jx2jxijxajxjBbx1bx2bxibxabxbxix1x2xixax
    x i j ∼ N ( μ i , σ 2 ) x_{ij}\sim N(\mu_i,\sigma^2) xijN(μi,σ2),各 x i j x_{ij} xij相互独立, i = 1 , 2 , ⋯   , a ,     j = 1 , 2 , ⋯   , b . i=1,2,\cdots,a, \ \ \ j=1,2,\cdots,b. i=1,2,,a,   j=1,2,,b.

    x i ⋅ = ∑ j = 1 b x i j ,      x ⋅ j = ∑ i = 1 a x i j x_{i\cdot}=\sum\limits_{j=1}^{b}x_{ij},\ \ \ \ x_{\cdot j}=\sum\limits_{i=1}^ax_{ij} xi=j=1bxij,    xj=i=1axij
    S T = ∑ i = 1 a ∑ j = 1 b x i j 2 − x ⋅ ⋅ 2 a b S A = ∑ i = 1 a x i ⋅ 2 b − x ⋅ ⋅ 2 a b S B = ∑ j = 1 b x ⋅ j 2 a − x ⋅ ⋅ 2 a b S E = S T − S A − S B } \left. \begin{aligned} &S_T=\sum\limits_{i=1}^a\sum\limits_{j=1}^bx_{ij}^2-\frac{x_{\cdot\cdot}^2}{ab} \\ &S_A=\sum\limits_{i=1}^a\frac{x_{i\cdot}^2}{b}-\frac{x_{\cdot\cdot}^2}{ab} \\ &S_B=\sum\limits_{j=1}^b\frac{x_{\cdot j}^2}{a}-\frac{x_{\cdot\cdot}^2}{ab} \\ &S_E=S_T-S_A-S_B \\ \end{aligned} \right\} ST=i=1aj=1bxij2abx2SA=i=1abxi2abx2SB=j=1baxj2abx2SE=STSASB
    方差分析表
方差来源平方和自由度均方F比
因素 A A A S A S_A SA a − 1 a-1 a1 M S A = S A a − 1 MS_A=\frac{S_A}{a-1} MSA=a1SA F 1 = M S A M S E F_1=\frac{MS_A}{MS_E} F1=MSEMSA
因素 B B B S B S_B SB b − 1 b-1 b1 M S B = S B b − 1 MS_B=\frac{S_B}{b-1} MSB=b1SB F 2 = M S B M S E F_2=\frac{MS_B}{MS_E} F2=MSEMSB
误差 E E E S E S_E SE ( a − 1 ) ( b − 1 ) (a-1)(b-1) (a1)(b1) M S E = S E ( a − 1 ) ( b − 1 ) MS_E=\frac{S_E}{(a-1)(b-1)} MSE=(a1)(b1)SE
总和 T T T S A S_A SA a b − 1 ab-1 ab1

判断:
(1)若 F 1 > F α ( a − 1 , ( a − 1 ) ( b − 1 ) ) F_1>F_\alpha(a-1,(a-1)(b-1)) F1>Fα(a1,(a1)(b1)),则拒绝 H A 0 H_{A0} HA0,接受 H A 1 H_{A1} HA1,因素 A A A有显著影响;若 F 1 < F α ( a − 1 , ( a − 1 ) ( b − 1 ) ) F_1<F_\alpha(a-1,(a-1)(b-1)) F1<Fα(a1,(a1)(b1)),则接受 H A 0 H_{A0} HA0,因素 A A A无显著影响。
(2)若 F 2 > F α ( b − 1 , ( a − 1 ) ( b − 1 ) ) F_2>F_\alpha(b-1,(a-1)(b-1)) F2>Fα(b1,(a1)(b1)),则拒绝 H B 0 H_{B0} HB0,接受 H B 1 H_{B1} HB1,因素 B B B有显著影响;若 F 2 < F α ( b − 1 , ( a − 1 ) ( b − 1 ) ) F_2<F_\alpha(b-1,(a-1)(b-1)) F2<Fα(b1,(a1)(b1)),则接受 H B 0 H_{B0} HB0,因素 B B B无显著影响。

  1. 有交互作用
    设两因素 A 、 B A、B AB A A A a a a个水平: A 1 , A 2 , ⋯   , A a A_1,A_2,\cdots,A_a A1,A2,,Aa B B B b b b个水平: B 1 , B 2 , ⋯   , B b B_1,B_2,\cdots,B_b B1,B2,,Bb,为研究交互作用的影响,在每一个组合水平 ( A i , B j ) (A_i,B_j) (Ai,Bj)下重复做 n n n ( n ≥ 2 ) (n\geq2) (n2)试验,每个观察值记为 x i j k ,   k = 1 , 2 , ⋯   , n x_{ijk},\ k=1,2,\cdots,n xijk, k=1,2,,n,如下表所示:
    B ( j ) A ( i ) B 1 B 2 ⋯ B b A 1 x 111   x 112 ⋯ x 11 n x 121   x 122 ⋯ x 12 n ⋯ x 1 b 1   x 1 b 2 ⋯ x 1 b n A 2 x 211   x 212 ⋯ x 21 n x 221   x 222 ⋯ x 22 n ⋯ x 2 b 1   x 2 b 2 ⋯ x 2 b n ⋮ ⋯   ⋯   ⋯ ⋯   ⋯   ⋯ ⋯   ⋯   ⋯ ⋯ A a x a 11   x a 12 ⋯ x a 1 n x a 21   x a 22 ⋯ x a 2 n ⋯ x a b 1   x a b 2 ⋯ x a b n \begin{array}{c|cccc} \hline &B(j)\\A(i) & B_1 & B_2 & \cdots & B_b \\ \hline A_1 & x_{111}\ x_{112}\cdots x_{11n} & x_{121}\ x_{122}\cdots x_{12n} & \cdots & x_{1b1}\ x_{1b2}\cdots x_{1bn} \\ A_2 & x_{211}\ x_{212}\cdots x_{21n} & x_{221}\ x_{222}\cdots x_{22n} & \cdots & x_{2b1}\ x_{2b2}\cdots x_{2bn} \\ \vdots & \cdots\ \cdots\ \cdots & \cdots\ \cdots\ \cdots & \cdots\ \cdots\ \cdots & \cdots \\ A_a & x_{a11}\ x_{a12}\cdots x_{a1n} & x_{a21}\ x_{a22}\cdots x_{a2n} & \cdots & x_{ab1}\ x_{ab2}\cdots x_{abn} \\ \hline \end{array} A(i)A1A2AaB(j)B1x111 x112x11nx211 x212x21n  xa11 xa12xa1nB2x121 x122x12nx221 x222x22n  xa21 xa22xa2n  Bbx1b1 x1b2x1bnx2b1 x2b2x2bnxab1 xab2xabn
    x i j k ∼ N ( μ i j , σ 2 ) x_{ijk}\sim N(\mu_{ij},\sigma^2) xijkN(μij,σ2),各 x i j k x_{ijk} xijk相互独立, i = 1 , 2 , ⋯   , a ,     j = 1 , 2 , ⋯   , b ,     k = 1 , 2 , ⋯   , n . i=1,2,\cdots,a, \ \ \ j=1,2,\cdots,b, \ \ \ k=1,2,\cdots,n. i=1,2,,a,   j=1,2,,b,   k=1,2,,n.

    x i ⋅ ⋅ = ∑ j = 1 b ∑ k = 1 n x i j k ,     x ⋅ j ⋅ = ∑ i = 1 a ∑ k = 1 n x i j k , x ⋯ = ∑ i = 1 a ∑ j = 1 b ∑ k = 1 n x i j k . x_{i\cdot\cdot}=\sum\limits_{j=1}^{b}\sum\limits_{k=1}^{n}x_{ijk},\ \ \ x_{\cdot j\cdot}=\sum\limits_{i=1}^a\sum\limits_{k=1}^{n}x_{ijk},\\ x_{\cdots}=\sum\limits_{i=1}^a\sum\limits_{j=1}^{b}\sum\limits_{k=1}^{n}x_{ijk}. xi=j=1bk=1nxijk,   xj=i=1ak=1nxijk,x=i=1aj=1bk=1nxijk.
    S T = ∑ i = 1 a ∑ j = 1 b ∑ k = 1 n x i j k 2 − x ⋯ 2 a b n S A = ∑ i = 1 a x i ⋅ ⋅ 2 b n − x ⋯ 2 a b n S B = ∑ j = 1 b x ⋅ j ⋅ 2 a n − x ⋯ 2 a b n S A × B = ∑ i = 1 a ∑ j = 1 b x i j ⋅ 2 n − x ⋯ 2 a b n − S A − S B S E = S T − S A − S B − S A × B } \left. \begin{aligned} &S_T=\sum\limits_{i=1}^a\sum\limits_{j=1}^{b}\sum\limits_{k=1}^{n}x_{ijk}^2-\frac{x_{\cdots}^2}{abn} \\ &S_A=\sum\limits_{i=1}^a\frac{x_{i\cdot\cdot}^2}{bn}-\frac{x_{\cdots}^2}{abn} \\ &S_B=\sum\limits_{j=1}^b\frac{x_{\cdot j\cdot}^2}{an}-\frac{x_{\cdots}^2}{abn} \\ &S_{A\times B}=\sum\limits_{i=1}^a\sum\limits_{j=1}^{b}\frac{x_{ij\cdot} ^2}{n}-\frac{x_{\cdots}^2}{abn}-S_A-S_B \\ &S_E=S_T-S_A-S_B-S_{A\times B} \\ \end{aligned} \right\} ST=i=1aj=1bk=1nxijk2abnx2SA=i=1abnxi2abnx2SB=j=1banxj2abnx2SA×B=i=1aj=1bnxij2abnx2SASBSE=STSASBSA×B
    方差分析表
方差来源平方和自由度均方F比
因素 A A A S A S_A SA a − 1 a-1 a1 M S A = S A a − 1 MS_A=\frac{S_A}{a-1} MSA=a1SA F 1 = M S A M S E F_1=\frac{MS_A}{MS_E} F1=MSEMSA
因素 B B B S B S_B SB b − 1 b-1 b1 M S B = S B b − 1 MS_B=\frac{S_B}{b-1} MSB=b1SB F 2 = M S B M S E F_2=\frac{MS_B}{MS_E} F2=MSEMSB
交互作用 A × B \\ A\times B A×B S A × B S_{A\times B} SA×B ( a − 1 ) ( b − 1 ) (a-1)(b-1) (a1)(b1) M S A × B = S A × B ( a − 1 ) ( b − 1 ) MS_{A\times B}=\frac{S_{A\times B}}{(a-1)(b-1)} MSA×B=(a1)(b1)SA×B F 3 = M S A × B M S E F_3=\frac{MS_{A\times B}}{MS_E} F3=MSEMSA×B
误差 E E E S E S_E SE a b ( n − 1 ) ab(n-1) ab(n1) M S E = S E a b ( n − 1 ) MS_E=\frac{S_E}{ab(n-1)} MSE=ab(n1)SE
总和 T T T S A S_A SA a b n − 1 abn-1 abn1

判断:
(1)若 F 1 > F α ( a − 1 , a b ( n − 1 ) ) F_1>F_\alpha(a-1,ab(n-1)) F1>Fα(a1,ab(n1)),则拒绝 H A 0 H_{A0} HA0,接受 H A 1 H_{A1} HA1,因素 A A A有显著影响;若 F 1 < F α ( a − 1 , a b ( n − 1 ) ) F_1<F_\alpha(a-1,ab(n-1)) F1<Fα(a1,ab(n1)),则接受 H A 0 H_{A0} HA0,因素 A A A无显著影响。
(2)若 F 2 > F α ( b − 1 , a b ( n − 1 ) ) F_2>F_\alpha(b-1,ab(n-1)) F2>Fα(b1,ab(n1)),则拒绝 H B 0 H_{B0} HB0,接受 H B 1 H_{B1} HB1,因素 B B B有显著影响;若 F 2 < F α ( b − 1 , a b ( n − 1 ) ) F_2<F_\alpha(b-1,ab(n-1)) F2<Fα(b1,ab(n1)),则接受 H B 0 H_{B0} HB0,因素 B B B无显著影响。
(3)若 F 3 > F α ( ( a − 1 ) ( b − 1 ) , a b ( n − 1 ) ) F_3>F_\alpha((a-1)(b-1),ab(n-1)) F3>Fα((a1)(b1),ab(n1)),则拒绝 H A B 0 H_{AB0} HAB0,接受 H A B 1 H_{AB1} HAB1,交互作用 A × B A\times B A×B有显著影响;若 F 2 < F α ( ( a − 1 ) ( b − 1 ) , a b ( n − 1 ) ) F_2<F_\alpha((a-1)(b-1),ab(n-1)) F2<Fα((a1)(b1),ab(n1)),则接受 H A B 0 H_{AB0} HAB0,交互作用 A × B A\times B A×B无显著影响。


PS:
利用EXCEL进行方差分析(数据来源:应用概率统计 陈魁 清华大学出版社 习题10.4)
excel方差分析

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这本书是一本关于使用Matlab进行统计分析的案例分析指南,共有40个案例进行了详细的讲解和分析。书中讲述了如何使用Matlab进行基本的统计分析,如均值、方差、标准差等,同时也介绍了其他一些高级的统计分析方法,如回归分析和因子分析等。这对于需要进行数据分析的人员来说非常有帮助,尤其是那些对Matlab还不太熟悉的人。 每个案例都有详细的解释和代码,这使得读者很容易理解和重复实验。此外,书中还包含了一些相关的数学知识,这些知识可以帮助读者更好地理解Matlab的应用和分析方法。 总体而言,这本书是一个很好的学习资源,不仅可以帮助人们更好地了解Matlab的应用,还可以提高他们在统计分析方面的能力。如果你需要进行数据处理和分析,不妨阅读这本书,相信它会给你带来很大的帮助。 ### 回答2: PDF谢中华,MATLAB统计分析与应用:40个案例分析,北京航空航天大学出版社是一本将实际案例与实用工具相结合的统计分析教材。该书共分为四个部分:基础统计分析、高级统计分析、数据挖掘与机器学习以及实用工具与技巧,其中每部分均包含十个以MATLAB软件为基础的案例分析。 该书作者谢中华是北京航空航天大学数学与统计学院的教授,对于统计分析领域有深入的研究与实践经验。他通过40个典型案例的实际分析,结合具体的算法与技术,向读者展示了如何利用MATLAB进行各种类型的统计分析,如正态性检验、方差分析、回归分析、主成分分析等。另外,该书还介绍了常用的数据挖掘技术,包括聚类分析、分类分析、关联规则挖掘等,以及机器学习方法,如支持向量机、神经网络等都有详细的讲解和案例应用。 此外,书中还介绍了一些实用工具和技巧,如数据可视化、矩阵操作、统计建模、Python编程与MATLAB相结合等。这些内容将有助于读者进一步发挥MATLAB在实际统计分析中的作用。 综合来看,PDF谢中华,MATLAB统计分析与应用:40个案例分析,北京航空航天大学出版社是一本完整的统计分析教材,内容涵盖广泛,案例贴近实际,适合学习统计分析和MATLAB的学生和工程师阅读。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值