取样函数
取样
以自变量 t t t 的均匀间隔 Δ T \Delta T ΔT 对函数 f ( t ) f(t) f(t) 进行取样。等效于将 f ( t ) f(t) f(t) 乘上一个冲激串:
f ~ ( t ) = f ( t ) s Δ T ( t ) = ∑ n = − ∞ ∞ f ( t ) δ ( t − n Δ T ) \tilde{f}(t)=f(t)s_{\Delta T}(t)=\sum_{n=-\infty}^\infty f(t)\delta(t-n\Delta T) f~(t)=f(t)sΔT(t)=n=−∞∑∞f(t)δ(t−nΔT)
此取样序列的任意一个取样值 f k f_k fk 由积分给出:
f k = ∫ − ∞ ∞ f ( t ) δ ( t − k Δ T ) d t = f ( k Δ T ) f_k=\int_{-\infty}^\infty f(t)\delta(t-k\Delta T)\mathrm dt=f(k\Delta T) fk=∫−∞∞f(t)δ(t−kΔ