取样函数
取样
以自变量
t
t
t 的均匀间隔
Δ
T
\Delta T
ΔT 对函数
f
(
t
)
f(t)
f(t) 进行取样。等效于将
f
(
t
)
f(t)
f(t) 乘上一个冲激串:
f
~
(
t
)
=
f
(
t
)
s
Δ
T
(
t
)
=
∑
n
=
−
∞
∞
f
(
t
)
δ
(
t
−
n
Δ
T
)
\tilde{f}(t)=f(t)s_{\Delta T}(t)=\sum_{n=-\infty}^\infty f(t)\delta(t-n\Delta T)
f~(t)=f(t)sΔT(t)=n=−∞∑∞f(t)δ(t−nΔT)
此取样序列的任意一个取样值
f
k
f_k
fk 由积分给出:
f
k
=
∫
−
∞
∞
f
(
t
)
δ
(
t
−
k
Δ
T
)
d
t
=
f
(
k
Δ
T
)
f_k=\int_{-\infty}^\infty f(t)\delta(t-k\Delta T)\mathrm dt=f(k\Delta T)
fk=∫−∞∞f(t)δ(t−kΔT)dt=f(kΔT)
取样后函数的傅里叶变换
由卷积定理,空间域中两个函数乘积的傅里叶变换 是两个函数在频域中的卷积。设
f
(
t
)
f(t)
f(t) 的傅里叶变换为
F
(
μ
)
F(\mu)
F(μ),而取样后的函数
f
~
(
t
)
\tilde{f}(t)
f~(t) 是
f
(
t
)
f(t)
f(t) 和冲激串的乘积。于是:
F
~
(
μ
)
=
ℑ
{
f
~
(
t
)
}
=
ℑ
{
f
(
t
)
s
Δ
T
(
t
)
}
=
(
F
⋆
S
)
(
μ
)
\tilde{F}(\mu)=\Im\{\tilde{f}(t)\}=\Im\{f(t)s_{\Delta T}(t)\}=(F\star S)(\mu)
F~(μ)=ℑ{f~(t)}=ℑ{f(t)sΔT(t)}=(F⋆S)(μ)
上一节我们有:
S
(
μ
)
=
1
Δ
T
∑
n
=
−
∞
∞
δ
(
μ
−
n
Δ
T
)
S(\mu)=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty\delta\left(\mu-\frac{n}{\Delta T}\right)
S(μ)=ΔT1n=−∞∑∞δ(μ−ΔTn)
于是:
F
~
(
μ
)
=
(
F
⋆
S
)
(
μ
)
=
∫
−
∞
∞
F
(
τ
)
S
(
μ
−
τ
)
d
τ
=
1
Δ
T
∫
−
∞
∞
F
(
τ
)
∑
n
=
−
∞
∞
δ
(
μ
−
τ
−
n
Δ
T
)
d
τ
=
1
Δ
T
∑
n
=
−
∞
∞
∫
−
∞
∞
F
(
τ
)
δ
(
μ
−
τ
−
n
Δ
T
)
d
τ
=
1
Δ
T
∑
n
=
−
∞
∞
F
(
μ
−
n
Δ
T
)
\begin{aligned} \tilde{F}(\mu) &=(F\star S)(\mu)=\int_{-\infty}^\infty F(\tau)S(\mu-\tau)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\int_{-\infty}^\infty F(\tau)\sum_{n=-\infty}^\infty\delta\left(\mu-\tau-\frac{n}{\Delta T}\right)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty\int_{-\infty}^\infty F(\tau)\delta\left(\mu-\tau-\frac{n}{\Delta T}\right)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty F\left(\mu-\frac{n}{\Delta T}\right) \end{aligned}
F~(μ)=(F⋆S)(μ)=∫−∞∞F(τ)S(μ−τ)dτ=ΔT1∫−∞∞F(τ)n=−∞∑∞δ(μ−τ−ΔTn)dτ=ΔT1n=−∞∑∞∫−∞∞F(τ)δ(μ−τ−ΔTn)dτ=ΔT1n=−∞∑∞F(μ−ΔTn)
这表明取样后的傅里叶变换
F
~
(
μ
)
\tilde{F}(\mu)
F~(μ) 是原函数傅里叶变换
F
(
μ
)
F(\mu)
F(μ) 的一个周期的副本序列,周期间隔为
1
Δ
T
\frac{1}{\Delta T}
ΔT1。
设有带限函数
f
(
x
)
f(x)
f(x) 最大频率为
μ
m
a
x
\mu_{max}
μmax,其傅里叶变换
F
(
μ
)
F(\mu)
F(μ) 及取样函数傅里叶变换
F
~
(
μ
)
\tilde{F}(\mu)
F~(μ) 如下图所示:
于是我们可以对采样函数的傅里叶变换取出一个周期,得到原函数的傅里叶变换副本。但限制也如上图所示,采样频率需大于原信号频率的两倍。即取样定理。这个采样频率称为奈奎斯特率。
1
Δ
T
>
2
μ
m
a
x
\frac{1}{\Delta T}>2\mu_{max}
ΔT1>2μmax
混叠
混叠来源于对信号的欠采样,从图片中更容易看出。两个信号具有同样的采样结果。