学习笔记-频率域滤波(2)-取样函数

取样

以自变量 t t t 的均匀间隔 Δ T \Delta T ΔT 对函数 f ( t ) f(t) f(t) 进行取样。等效于将 f ( t ) f(t) f(t) 乘上一个冲激串:
f ~ ( t ) = f ( t ) s Δ T ( t ) = ∑ n = − ∞ ∞ f ( t ) δ ( t − n Δ T ) \tilde{f}(t)=f(t)s_{\Delta T}(t)=\sum_{n=-\infty}^\infty f(t)\delta(t-n\Delta T) f~(t)=f(t)sΔT(t)=n=f(t)δ(tnΔT)
此取样序列的任意一个取样值 f k f_k fk 由积分给出:
f k = ∫ − ∞ ∞ f ( t ) δ ( t − k Δ T ) d t = f ( k Δ T ) f_k=\int_{-\infty}^\infty f(t)\delta(t-k\Delta T)\mathrm dt=f(k\Delta T) fk=f(t)δ(tkΔT)dt=f(kΔT)

取样后函数的傅里叶变换

由卷积定理,空间域中两个函数乘积的傅里叶变换 是两个函数在频域中的卷积。设 f ( t ) f(t) f(t) 的傅里叶变换为 F ( μ ) F(\mu) F(μ),而取样后的函数 f ~ ( t ) \tilde{f}(t) f~(t) f ( t ) f(t) f(t) 和冲激串的乘积。于是:
F ~ ( μ ) = ℑ { f ~ ( t ) } = ℑ { f ( t ) s Δ T ( t ) } = ( F ⋆ S ) ( μ ) \tilde{F}(\mu)=\Im\{\tilde{f}(t)\}=\Im\{f(t)s_{\Delta T}(t)\}=(F\star S)(\mu) F~(μ)={f~(t)}={f(t)sΔT(t)}=(FS)(μ)
上一节我们有:
S ( μ ) = 1 Δ T ∑ n = − ∞ ∞ δ ( μ − n Δ T ) S(\mu)=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty\delta\left(\mu-\frac{n}{\Delta T}\right) S(μ)=ΔT1n=δ(μΔTn)
于是:
F ~ ( μ ) = ( F ⋆ S ) ( μ ) = ∫ − ∞ ∞ F ( τ ) S ( μ − τ ) d τ = 1 Δ T ∫ − ∞ ∞ F ( τ ) ∑ n = − ∞ ∞ δ ( μ − τ − n Δ T ) d τ = 1 Δ T ∑ n = − ∞ ∞ ∫ − ∞ ∞ F ( τ ) δ ( μ − τ − n Δ T ) d τ = 1 Δ T ∑ n = − ∞ ∞ F ( μ − n Δ T ) \begin{aligned} \tilde{F}(\mu) &=(F\star S)(\mu)=\int_{-\infty}^\infty F(\tau)S(\mu-\tau)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\int_{-\infty}^\infty F(\tau)\sum_{n=-\infty}^\infty\delta\left(\mu-\tau-\frac{n}{\Delta T}\right)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty\int_{-\infty}^\infty F(\tau)\delta\left(\mu-\tau-\frac{n}{\Delta T}\right)\mathrm d\tau \\[4ex] &=\frac{1}{\Delta T}\sum_{n=-\infty}^\infty F\left(\mu-\frac{n}{\Delta T}\right) \end{aligned} F~(μ)=(FS)(μ)=F(τ)S(μτ)dτ=ΔT1F(τ)n=δ(μτΔTn)dτ=ΔT1n=F(τ)δ(μτΔTn)dτ=ΔT1n=F(μΔTn)
这表明取样后的傅里叶变换 F ~ ( μ ) \tilde{F}(\mu) F~(μ) 是原函数傅里叶变换 F ( μ ) F(\mu) F(μ) 的一个周期的副本序列,周期间隔为 1 Δ T \frac{1}{\Delta T} ΔT1

设有带限函数 f ( x ) f(x) f(x) 最大频率为 μ m a x \mu_{max} μmax,其傅里叶变换 F ( μ ) F(\mu) F(μ) 及取样函数傅里叶变换 F ~ ( μ ) \tilde{F}(\mu) F~(μ) 如下图所示:
图片来自知乎
于是我们可以对采样函数的傅里叶变换取出一个周期,得到原函数的傅里叶变换副本。但限制也如上图所示,采样频率需大于原信号频率的两倍。即取样定理。这个采样频率称为奈奎斯特率
1 Δ T > 2 μ m a x \frac{1}{\Delta T}>2\mu_{max} ΔT1>2μmax

混叠

混叠来源于对信号的欠采样,从图片中更容易看出。两个信号具有同样的采样结果。
来源于数字图像处理 第四版

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天枢小生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值