https://nanti.jisuanke.com/t/16443
算法 1
我们知道,冒泡排序需要交换的次数就是逆序对的对数,我们可以每次 O(N2)\mathcal{O}(N^2)O(N2) 来求逆序对数目,时间复杂度 O(N2M)\mathcal{O}(N^2M)O(N2M),期望得分 303030 分。
算法 2
考虑优化求逆序对的算法,可以用归并排序或者树状数组或者线段树来优化求逆序对的算法,时间复杂度 O(NMlog2N)\mathcal{O}(NM\log_2N)O(NMlog2N)。
算法 3
求逆序对的算法已经不能再优化,但考虑到 ∑∣l[i]−l[i−1]∣+\sum|l[i]-l[i-1]|+∑∣l[i]−l[i−1]∣+ ∑∣r[i]−r[i−1]∣\sum|r[i]-r[i-1]|∑∣r[i]−r[i−1]∣ 有限,考虑到在已知区间 [l,r][l,r][l,r] 答案的情况下可以快速求出区间 [l,r+1],[l,r+1],[l,r+1], [l,r−1],[l,r-1],[l,r−1], [l+1,r],[l+1,r],[l+1,r], [l−1,r][l-1,r][l−1,r] 的答案(具体实现可参考标程)。我们可以动态维护树状数组来维护答案,时间复杂度 O((∑∣l[i]−l[i−1]∣+\mathcal{O}((\sum|l[i]-l[i-1]|+O((∑∣l[i]−l[i−1]∣+ ∑∣r[i]−r[i−1]∣)log2N)\sum|r[i]-r[i-1]|)log_2N)∑∣r[i]−r[i−1]∣)log2N),期望得分 100100100 分。
#include<bits/stdc++.h>
using namespace std;
int len,n,m,a[30050],g[30050];
int abs(int x){
return x>0?x:-x;
}
struct node{
int id,l,r;
} q[30050];
int ans[30050],vis[30050];
bool operator<(node x,node y){
if(x.l/len==y.l/len) return x.r<y.r;
else return x.l/len<y.l/len;
}
int lowbit(int x){
return x&(-x);
}
void insert(int id,int num){
for(int i=id;i<=n;i+=lowbit(i))
g[i]+=num;
}
int getsum(int id){
int sum=0;
for(int i=id;i;i-=lowbit(i))
sum+=g[i];
return sum;
}
int main(){
scanf("%d",&n);
memset(g, 0, sizeof(g));
memset(ans, 0, sizeof(ans));
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
int cnt=0;
for(int i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i,cnt+=abs(q[i].l-q[i-1].l)+abs(q[i].r-q[i-1].r);
int nl=1,nr=0,nans=0;
for(int i=1;i<=m;i++){
while(nr<q[i].r){
nr++;nans+=getsum(n)-getsum(a[nr]);
insert(a[nr],1);
}
while(nr>q[i].r){
insert(a[nr],-1);nans-=getsum(n)-getsum(a[nr]);
nr--;
}
while(nl<q[i].l){
insert(a[nl],-1);nans-=getsum(a[nl]);
nl++;
}
while(nl>q[i].l){
nl--;nans+=getsum(a[nl]);
insert(a[nl],1);
}
ans[q[i].id]=nans;
}
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
}