蒜头君的排序

本文介绍了一种关于逆序对求解的算法优化方案,从简单的冒泡排序到高效的归并排序、树状数组及线段树方法,并最终提出一种动态维护树状数组的策略,将时间复杂度降低至O((∑∣l[i]−l[i−1]∣+∑∣r[i]−r[i−1]∣)log2N)。
摘要由CSDN通过智能技术生成

https://nanti.jisuanke.com/t/16443


算法 1

我们知道,冒泡排序需要交换的次数就是逆序对的对数,我们可以每次 O(N2)\mathcal{O}(N^2)O(N2) 来求逆序对数目,时间复杂度 O(N2M)\mathcal{O}(N^2M)O(N2M),期望得分 303030 分。

算法 2

考虑优化求逆序对的算法,可以用归并排序或者树状数组或者线段树来优化求逆序对的算法,时间复杂度 O(NMlog2N)\mathcal{O}(NM\log_2N)O(NMlog2N)

算法 3

求逆序对的算法已经不能再优化,但考虑到 ∑∣l[i]−l[i−1]∣+\sum|l[i]-l[i-1]|+l[i]l[i1]+ ∑∣r[i]−r[i−1]∣\sum|r[i]-r[i-1]|r[i]r[i1] 有限,考虑到在已知区间 [l,r][l,r][l,r] 答案的情况下可以快速求出区间 [l,r+1],[l,r+1],[l,r+1], [l,r−1],[l,r-1],[l,r1], [l+1,r],[l+1,r],[l+1,r], [l−1,r][l-1,r][l1,r] 的答案(具体实现可参考标程)。我们可以动态维护树状数组来维护答案,时间复杂度 O((∑∣l[i]−l[i−1]∣+\mathcal{O}((\sum|l[i]-l[i-1]|+O((l[i]l[i1]+ ∑∣r[i]−r[i−1]∣)log2N)\sum|r[i]-r[i-1]|)log_2N)r[i]r[i1])log2N),期望得分 100100100 分。

#include<bits/stdc++.h>
using namespace std;
int len,n,m,a[30050],g[30050];
int abs(int x){
	return x>0?x:-x;
}
struct node{
	int id,l,r;
} q[30050]; 
int ans[30050],vis[30050];
bool operator<(node x,node y){
	if(x.l/len==y.l/len) return x.r<y.r;
	else return x.l/len<y.l/len;
}
int lowbit(int x){
	return x&(-x);
}
void insert(int id,int num){
	for(int i=id;i<=n;i+=lowbit(i))
		g[i]+=num;
}
int getsum(int id){
	int sum=0;
	for(int i=id;i;i-=lowbit(i))
		sum+=g[i];
	return sum;
}
int main(){
	scanf("%d",&n);
    memset(g, 0, sizeof(g));
    memset(ans, 0, sizeof(ans));
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	scanf("%d",&m);
	int cnt=0;
	for(int i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i,cnt+=abs(q[i].l-q[i-1].l)+abs(q[i].r-q[i-1].r);
	int nl=1,nr=0,nans=0;
	for(int i=1;i<=m;i++){
		while(nr<q[i].r){
			nr++;nans+=getsum(n)-getsum(a[nr]);
			insert(a[nr],1);
		}
		while(nr>q[i].r){
			insert(a[nr],-1);nans-=getsum(n)-getsum(a[nr]);
			nr--;
		}
		while(nl<q[i].l){
			insert(a[nl],-1);nans-=getsum(a[nl]);
			nl++;
		}
		while(nl>q[i].l){
			nl--;nans+=getsum(a[nl]);
			insert(a[nl],1);
		}
		ans[q[i].id]=nans;
	}
	for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值