人工智能课复习(简答题)


1.什么叫人工智能?它与云计算、大数据和物联网之间有什么关系?

人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
关系:物联网的正常运行是通过大数据传输信息给云计算平台处理,然后人工智能提取云计算平台存储的数据进行活动。

2.人工智能有哪三大流派?他们各自观点是什么?

1符号主义源于数理逻辑,认为智能产生于大脑的抽象思维,主观意识过程,例如数学推导,概念化的知识表示,模型语义推理2连接主义源于仿生学,认为人工智能产生于人的脑神经元之间的相互作用及信息往来的学习与统计过程。3行为主义源于心理学与控制学,认为智能是产生于主题与环境的交互过程。基于可观测的具体的行为活动,以控制论及感知-动作型控制系统为基础,摒弃了内省的思维过程,而把智能的研究建立在可观测的具体的行为活动基础上。

3.知识的表达方式有哪些?
试举例说明某一种表达方式的应用。

知识表达方式:谓词逻辑表示法,产生式表示法,语义网络表示法,框架表示法,脚本表示法,过程表示法,面向对象表示法,神经网络表示法.
应用:谓词逻辑表示法是目前应用最广的方法之一,在AI系统上已经得到了应用。

4试用谓词逻辑表达描述下述推理:
(1)如果张三比李四大,那么李四比张三小。
(2)甲和乙结婚了,则或者甲为男,乙为女;或者甲为女,乙为男。
(3)如果一个人是老实人,他就不会说慌;张三说谎了,所以张三不是一个老实人。

在这里插入图片描述

5原命题:不管黑猫白猫, 抓住老鼠就是好猫。写出原命题的谓词表达式。

设K(x,y):x抓住y,G(x):x是好的,C(x):x是猫,B(x):x是黑的,W(x):x是白的,M(x):x是老鼠,则原命题符号化为

在这里插入图片描述

6求P ∧ (Q → R) → S 的合取范式。

在这里插入图片描述

7.某公司招聘人员,A、B、C 三人应试,经面试后,公司有如下想法:
(1) 三人中至少录用一人;
(2) 如果录用A而不录用B,则一定录用C;
(3) 如果录用B,则一定录用C。
求证:公司一定录取C。

在这里插入图片描述

8.阐述人工神经网络的工作原理。什么叫卷积神经网络?什么叫循环神经网络?二者各有什么特点?试举例说明其中一种神经网络的应用。

工作原理:从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。
卷积神经网络:卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
特点:局部连接,权值共享,降采样
循环神经网络:循环神经网络是一种反馈网络,模拟“人脑记忆功能”,常用于语言识别、机器翻译、视频分析、生成图像描述等。
特点:
应用:主要在自然语言处理方向应用;文档分类和时间序列分析;时间序列对比; 序列到序列的学习;情感分析;时间序列预测

9.什么是机器学习?深度学习与普通神经网络有什么不同?

机器学习就是研究如何使计算机具有类似人的学习能力,使它能通过学习自动的获取知识。不同:它们采用不同的训练机制。神经网络采用BP算法调整参数,即采用迭代算法来训练整个网络。随机设定初值,计算当前网络的输出,然后根据当前输出和样本真实标签之间的差去改变前面各层的参数,直到收敛。深度学习整体上是一个分层训练机制。
  
10.机器学习有哪些方法?机器学习的应用场合主要有哪些?

监督式学习 非监督式学习 半监督式学习 强化学习 关联规则学习 深度学习 决策树学习
金融领域:检测信用卡欺诈、证券市场分析等。
互联网领域:自然语言处理、语音识别、语言翻译、搜索引擎、广告推广、邮件的反垃圾过滤系统等。
医学领域:医学诊断等。
自动化及机器人领域:无人驾驶、图像处理、信号处理等。
生物领域:人体基因序列分析、蛋白质结构预测、DNA序列测序等。
游戏领域:游戏战略规划等。
新闻领域:新闻推荐系统等。
刑侦领域:潜在犯罪预测等。

11.深度学习的主要开发工具框架有哪些?
1.TensorFlow 2.Keras 3.Lasagne 4.Caffe 5.DSSTNE 6.Torch 7.MXNet 8.DL4J 9.Cognitive Toolkit


### 深度学习期末考试复习资料——简答题 #### 简述机器学习中的三类典型学习方法及其差异 在机器学习领域,主要存在三种典型的学习方法:监督学习、无监督学习和强化学习。每种方法都有其独特的应用场景和技术特点。 - **监督学习**涉及利用带有标签的数据集训练模型,目标是从输入特征预测特定输出变量。这类算法适用于分类和回归问题[^2]。 - **无监督学习**则处理未标注的数据,旨在发现数据内部结构或模式,如聚类分析和降维技术。此方法不依赖于预设的目标变量,而是探索隐藏的信息分布特性。 - **强化学习**通过代理(agent)与环境互动获得奖励信号来优化行为策略,强调长期累积回报最大化而非即时反馈。这种方法特别适合解决决策制定过程中遇到的任务规划等问题. 这三种方式的主要区别在于是否有明确的指导信息(即标记),以及如何评估性能好坏的标准不同。 #### 深度学习相较于传统机器学习的优势 相比于传统的浅层架构,深度学习具有以下几个显著优点: - 能够自动提取高层次抽象特征而无需人工设计复杂的特征工程; - 对大规模复杂数据具备更强的表现力和适应能力; - 利用了深层神经元之间的非线性组合关系构建更强大的表达形式; - 可以端到端(end-to-end)地完成从原始输入直到最终输出的整体映射过程; 这些因素共同作用下使深度学习成为当前人工智能研究中最活跃的一个分支之一,在图像识别、自然语言处理等多个方面取得了突破性进展。 #### 数据的基本组成单元及相关术语解释 每个数据通常由多个属性(attribute)/特征(feature)构成,大多数情况下它们遵循某种概率分布规律。样本(sample),有时候也被称作实例(instance)或是观测(observation)[^3]。在监督学习框架内所要预测的那个特殊属性被命名为标签(label) 或者响应(response)[^3]。 #### 描述反向传播的工作原理 定义一个简单的两层全连接前馈神经网络作为例子展示反向传播机制: 假设有一个包含两个隐含层的人工神经网络正在执行二分类任务。当给定一组输入$x$时,经过一系列激活函数变换后得到输出$\hat{y}$, 并据此计算损失值$L(\theta)$. 为了最小化这个误差项,需要按照链式法则沿着梯度方向更新各参数θ (包括但不限于权值w 和偏置b): \[ \Delta\theta=-\eta\nabla_\theta L(\theta)\] 其中η表示学习率超参控制着步长大小; ∇_θL(θ)代表关于所有可调参数求导后的结果向量. 这样就能逐步修正初始设定不合理之处直至收敛至局部最优解附近[^4]. ```python import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) # 初始化权重矩阵W及偏置向量b np.random.seed(0) W = np.random.randn(input_size, hidden_layer_sizes[0]) b = np.zeros((hidden_layer_sizes[0], )) for epoch in range(num_epochs): # 正向传播阶段... z = X @ W + b a = sigmoid(z) # 计算损失... loss = compute_loss(a, y_true) # 反向传播阶段... dloss_da = ... # 根据具体使用的损失函数推导而来 da_dz = a * (1 - a) # Sigmoid 函数的导数 delta = dloss_da * da_dz grad_W = X.T @ delta grad_b = np.sum(delta, axis=0) # 更新参数... W -= learning_rate * grad_W b -= learning_rate * grad_b ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小智RE0-走在路上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值