人工智能期末复习简答题

简答:

  1. 子句集的化简

(1).消去连接词”—>”和”<—>”

(2)减少否定符号的辖域

(3)对变元标准化

(4)化为前束范式

(5)消去存在量词

(6)化为Skolem标准形

(7)消去全称量词

(8)消去合取词

(9)更换变元名称

2.在状态空间搜索中,Open表与Closed表的作用与区别是什么?

### 深度学习期末考试复习资料——简答题 #### 简述机器学习中的三类典型学习方法及其差异 在机器学习领域,主要存在三种典型的学习方法:监督学习、无监督学习和强化学习。每种方法都有其独特的应用场景和技术特点。 - **监督学习**涉及利用带有标签的数据集训练模型,目标是从输入特征预测特定输出变量。这类算法适用于分类和回归问题[^2]。 - **无监督学习**则处理未标注的数据,旨在发现数据内部结构或模式,如聚类分析和降维技术。此方法不依赖于预设的目标变量,而是探索隐藏的信息分布特性。 - **强化学习**通过代理(agent)与环境互动获得奖励信号来优化行为策略,强调长期累积回报最大化而非即时反馈。这种方法特别适合解决决策制定过程中遇到的任务规划等问题. 这三种方式的主要区别在于是否有明确的指导信息(即标记),以及如何评估性能好坏的标准不同。 #### 深度学习相较于传统机器学习的优势 相比于传统的浅层架构,深度学习具有以下几个显著优点: - 能够自动提取高层次抽象特征而无需人工设计复杂的特征工程; - 对大规模复杂数据具备更强的表现力和适应能力; - 利用了深层神经元之间的非线性组合关系构建更强大的表达形式; - 可以端到端(end-to-end)地完成从原始输入直到最终输出的整体映射过程; 这些因素共同作用下使深度学习成为当前人工智能研究中最活跃的一个分支之一,在图像识别、自然语言处理等多个方面取得了突破性进展。 #### 数据的基本组成单元及相关术语解释 每个数据通常由多个属性(attribute)/特征(feature)构成,大多数情况下它们遵循某种概率分布规律。样本(sample),有时候也被称作实例(instance)或是观测(observation)[^3]。在监督学习框架内所要预测的那个特殊属性被命名为标签(label) 或者响应(response)[^3]。 #### 描述反向传播的工作原理 定义一个简单的两层全连接前馈神经网络作为例子展示反向传播机制: 假设有一个包含两个隐含层的人工神经网络正在执行二分类任务。当给定一组输入$x$时,经过一系列激活函数变换后得到输出$\hat{y}$, 并据此计算损失值$L(\theta)$. 为了最小化这个误差项,需要按照链式法则沿着梯度方向更新各参数θ (包括但不限于权值w 和偏置b): \[ \Delta\theta=-\eta\nabla_\theta L(\theta)\] 其中η表示学习率超参控制着步长大小; ∇_θL(θ)代表关于所有可调参数求导后的结果向量. 这样就能逐步修正初始设定不合理之处直至收敛至局部最优解附近[^4]. ```python import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) # 初始化权重矩阵W及偏置向量b np.random.seed(0) W = np.random.randn(input_size, hidden_layer_sizes[0]) b = np.zeros((hidden_layer_sizes[0], )) for epoch in range(num_epochs): # 正向传播阶段... z = X @ W + b a = sigmoid(z) # 计算损失... loss = compute_loss(a, y_true) # 反向传播阶段... dloss_da = ... # 根据具体使用的损失函数推导而来 da_dz = a * (1 - a) # Sigmoid 函数的导数 delta = dloss_da * da_dz grad_W = X.T @ delta grad_b = np.sum(delta, axis=0) # 更新参数... W -= learning_rate * grad_W b -= learning_rate * grad_b ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值