基于马尔可夫链的省份人才占比预测
模型假设
1.不考虑人才总数增长对人才流动的影响
2.不考虑未来各省份政策改变造成的影响
3.每个省份有一定百分比的固定人才
马尔科夫链
马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。
转载自链接: link.
马尔科夫链转移矩阵构造
由马尔可夫预测原理,只要我们知道每个省份人才之间的迁移概率,即可预测未来人才流动趋势。
为了得到迁移概率,可以通过TOPSIS法(优劣解距离法),通过各项指标综合评价得到各省份的人才吸引力,即可转化成流动人才的迁移概率,随后能构造转移矩阵。
TOPSIS的指标及权重确定
1.指标的确定
综合能找到的数据,确定了各省GDP总量,人才效能(人才数/GDP),经济增长率,科研技术工作平均工资,失业率 ,城镇人均每年消费支出,卫生技术人员比例,省份间距离,八项作为评价指标。其中人才效能(人才数/GDP),失业率,省份间距离为极小型指标,需正向化处理。
2.基于遗传算法的最优化方法确定权重
由于已有资料包括2017年的各项指标数据和2018年毕业生各省份流动人口趋势,权重的确定即可利用最优化模型来确定。(注:省间距离指标是评价两两省份之间迁移概率所需,此处暂不考虑)
采用遗传算法的方法最终得到除“省份间距离”这项评价指标外的其他指标最优权重。
最终各项指标权重如下:
指标 | 权重 |
---|---|
各省GDP总量 | 0.1350 |
人才效能(人才数/GDP) | 0.1896 |
经济增长率 | 0.2153 |
科研技术工作平均工资 | 0.0885 |
失业率 | 0.0207 |
城镇人均每年消费支出 | 0.0981 |
卫生技术人员比例 | 0.2528 |
基于TOPSIS转移概率的确定
1.带入省间距离数据:以每个省到其他各省的距离作为“省间距离”指标数据(省间距离指标权重设为0.1,后加权平均),通过TOPSIS评价得到各省到其他省的迁移概率。
2.构造转移矩阵:约定各省有%90的固定人才,%10的流动人才按迁移概率分配。得到转移矩阵。(比例通过优化模型确定)
p
i
j
=
w
i
j
×
0.1
i
≠
j
{{p_{ij}} = {w_{ij}} \times 0.1} \qquad {i \ne j}
pij=wij×0.1i=j
p
i
j
=
0.9
+
w
i
j
×
0.1
i
=
j
{{p_{ij}} = 0.9 + {w_{ij}} \times 0.1} \qquad{i = j}
pij=0.9+wij×0.1i=j
马尔可夫预测
w
(
n
)
=
w
(
n
−
1
)
P
{w^{(n)}} = {w^{(n - 1)}}P
w(n)=w(n−1)P
其中
w
(
n
)
{w^{(n)}}
w(n)为第n年以后的各省人才占比.于是
w
(
n
)
=
w
(
0
)
P
n
{w^{(n)}} = {w^{(0)}}{P^n}
w(n)=w(0)Pn
即可预测出第n年后的各省人才占比