基于马尔可夫链的省份人才占比预测

基于马尔可夫链的省份人才占比预测

模型假设

1.不考虑人才总数增长对人才流动的影响
2.不考虑未来各省份政策改变造成的影响
3.每个省份有一定百分比的固定人才

马尔科夫链

马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。

转载自链接: link.

马尔科夫链转移矩阵构造

由马尔可夫预测原理,只要我们知道每个省份人才之间的迁移概率,即可预测未来人才流动趋势。
为了得到迁移概率,可以通过TOPSIS法(优劣解距离法),通过各项指标综合评价得到各省份的人才吸引力,即可转化成流动人才的迁移概率,随后能构造转移矩阵。

TOPSIS的指标及权重确定

1.指标的确定

综合能找到的数据,确定了各省GDP总量人才效能(人才数/GDP),经济增长率,科研技术工作平均工资,失业率 ,城镇人均每年消费支出,卫生技术人员比例,省份间距离,八项作为评价指标。其中人才效能(人才数/GDP),失业率,省份间距离为极小型指标,需正向化处理。

2.基于遗传算法的最优化方法确定权重

由于已有资料包括2017年的各项指标数据和2018年毕业生各省份流动人口趋势,权重的确定即可利用最优化模型来确定。(注:省间距离指标是评价两两省份之间迁移概率所需,此处暂不考虑

采用遗传算法的方法最终得到除“省份间距离”这项评价指标外的其他指标最优权重。
最终各项指标权重如下:

指标权重
各省GDP总量0.1350
人才效能(人才数/GDP)0.1896
经济增长率0.2153
科研技术工作平均工资0.0885
失业率0.0207
城镇人均每年消费支出0.0981
卫生技术人员比例0.2528

基于TOPSIS转移概率的确定

1.带入省间距离数据:以每个省到其他各省的距离作为“省间距离”指标数据(省间距离指标权重设为0.1,后加权平均),通过TOPSIS评价得到各省到其他省的迁移概率。

2.构造转移矩阵:约定各省有%90的固定人才,%10的流动人才按迁移概率分配。得到转移矩阵。(比例通过优化模型确定)

p i j = w i j × 0.1 i ≠ j {{p_{ij}} = {w_{ij}} \times 0.1} \qquad {i \ne j} pij=wij×0.1i=j
p i j = 0.9 + w i j × 0.1 i = j {{p_{ij}} = 0.9 + {w_{ij}} \times 0.1} \qquad{i = j} pij=0.9+wij×0.1i=j

马尔可夫预测

w ( n ) = w ( n − 1 ) P {w^{(n)}} = {w^{(n - 1)}}P w(n)=w(n1)P
其中 w ( n ) {w^{(n)}} w(n)为第n年以后的各省人才占比.于是
w ( n ) = w ( 0 ) P n {w^{(n)}} = {w^{(0)}}{P^n} w(n)=w(0)Pn
即可预测出第n年后的各省人才占比

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dddddxxxxx123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值