编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
解:
二分查找,先把每一行的最后看成是要查找的数组,找到右边界,然后开始二分查找这一行。代码如下:
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if(matrix.size() == 0 || matrix[0].size() == 0) return false;
int l = 0, r = matrix.size() - 1;
while(l < r)
{
int mid = l + r >> 1;
if(matrix[mid][matrix[mid].size() - 1] >= target) r = mid;
else l = mid + 1;
}
int h = l;
l = 0;
r = matrix[h].size() - 1;
while(l < r)
{
int mid = l + r + 1>> 1;
if(matrix[h][mid] <= target) l = mid;
else r = mid - 1;
}
if(matrix[h][r] == target) return true;
else return false;
}
};
本文介绍了一种高效的算法,用于判断在特定条件下,mxn矩阵中是否存在目标值。该矩阵的每行元素按升序排列,且每行首元素大于前一行末元素。通过二分查找优化搜索过程,首先定位目标值可能存在的行,再在该行内进行二分查找。
795

被折叠的 条评论
为什么被折叠?



