74.搜索二维矩阵【二分】

本文介绍了一种高效的算法,用于判断在特定条件下,mxn矩阵中是否存在目标值。该矩阵的每行元素按升序排列,且每行首元素大于前一行末元素。通过二分查找优化搜索过程,首先定位目标值可能存在的行,再在该行内进行二分查找。

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:
输入:

matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3

输出: true

示例 2:
输入:

matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13

输出: false

解:
  二分查找,先把每一行的最后看成是要查找的数组,找到右边界,然后开始二分查找这一行。代码如下:

class Solution {
public:
    bool searchMatrix(vector<vector<int>>& matrix, int target) {
        if(matrix.size() == 0 || matrix[0].size() == 0)  return false;
        int l = 0, r = matrix.size() - 1;
        while(l < r)
        {
            int mid = l + r >> 1;
            if(matrix[mid][matrix[mid].size() - 1] >= target)    r = mid;
            else    l = mid + 1;
        }
        int h = l;
        l = 0;
        r = matrix[h].size() - 1;
        while(l < r)
        {
            int mid = l + r + 1>> 1;
            if(matrix[h][mid] <= target)    l = mid;
            else    r = mid - 1;
        }
        if(matrix[h][r] == target) return true;
        else    return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值